Surface Morphology and Sputtering Mechanism of Etched Areas of a Metallic Target by Magnetron Sputtering

As an important functional thin-film material in the field of electronic information, high-purity titanium (Ti) is widely used in different industries, such as integrated circuits, flat-panel displays and solar energy, indicating the importance of further research on Ti targets. Herein, a titanium t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-04, Vol.50 (4), p.2409-2416
Hauptverfasser: Yang, Wen-hao, Tang, Bin, Bao, Ming-dong, Chang, Yong-qiang, Wang, Yu-peng, Zhao, Guo-hua, Zhang, Li-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2416
container_issue 4
container_start_page 2409
container_title Journal of electronic materials
container_volume 50
creator Yang, Wen-hao
Tang, Bin
Bao, Ming-dong
Chang, Yong-qiang
Wang, Yu-peng
Zhao, Guo-hua
Zhang, Li-jun
description As an important functional thin-film material in the field of electronic information, high-purity titanium (Ti) is widely used in different industries, such as integrated circuits, flat-panel displays and solar energy, indicating the importance of further research on Ti targets. Herein, a titanium target is placed in a UDP-650 closed-field nonequilibrium magnetron sputtering ion coating machine for deep etching to form racetrack grooves, and different positions of etching grooves are analyzed to understand the target etched behavior. The sputtering-induced etching of the Ti target, from shallow to deep regions, changes from the preferential sputtering of scratches and other defects in the edge area to the surface sputtering pits, with discontinuous distribution and uneven size, to grain boundary sputtering and, finally, to closely packed grain surface sputtering. The etching behavior of different regions exhibits different characteristics, mainly showing selective sputtering. The surface roughness of the sputtered area initially increases with the increase of sputtering depth and plasma density, followed by a slight decrease. Moreover, different degrees of incomplete recrystallization occur in different sputtering areas due to the uneven distribution of plasma on the target surface. The grain size increased from the transition area between sputtering and non-sputtering (112 μm) to the deepest sputtering area (139 μm). Moreover, the relationship between the cross-sectional grain size and sputter surface roughness renders a correlation coefficient of 0.802, indicating a strong influence of grain size on surface roughness. Therefore, it is of utmost importance to refine grains and increase the sputtering yield of the target as well as reduce the surface roughness of the target after etching to obtain a high-quality thin film.
doi_str_mv 10.1007/s11664-020-08726-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502565815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502565815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-57b5d5b05b281a53d7ea63f9d582bab8ee40c47917939900aa72d9b02951b8633</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscQ6s7dhxjlVVfiQqDi0SN8tOnCZVGgfbOfTtSQkSnDitVjszq_kQuiVwTwCyh0CIEGkCFBKQGRUJPUMzwlOWECk-ztEMmCAJp4xfoqsQ9gCEE0lmqN4MvtKFxWvn-9q1bnfEuivxph9itL7pdnhti1p3TThgV-FVLGpb4oW3Opx2PZ6jbtumwFvtdzZic8Rrvets9K77E3ONLirdBnvzM-fo_XG1XT4nr29PL8vFa1IwLmPCM8NLboAbKonmrMysFqzKSy6p0UZam0KRZjnJcpbnAFpntMwN0JwTIwVjc3Q35fbefQ42RLV3g-_Gl4pyoFxwSfioopOq8C4EbyvV--ag_VERUCeiaiKqRqLqm6iio4lNptCfGln_G_2P6wtaa3jf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502565815</pqid></control><display><type>article</type><title>Surface Morphology and Sputtering Mechanism of Etched Areas of a Metallic Target by Magnetron Sputtering</title><source>SpringerLink Journals</source><creator>Yang, Wen-hao ; Tang, Bin ; Bao, Ming-dong ; Chang, Yong-qiang ; Wang, Yu-peng ; Zhao, Guo-hua ; Zhang, Li-jun</creator><creatorcontrib>Yang, Wen-hao ; Tang, Bin ; Bao, Ming-dong ; Chang, Yong-qiang ; Wang, Yu-peng ; Zhao, Guo-hua ; Zhang, Li-jun</creatorcontrib><description>As an important functional thin-film material in the field of electronic information, high-purity titanium (Ti) is widely used in different industries, such as integrated circuits, flat-panel displays and solar energy, indicating the importance of further research on Ti targets. Herein, a titanium target is placed in a UDP-650 closed-field nonequilibrium magnetron sputtering ion coating machine for deep etching to form racetrack grooves, and different positions of etching grooves are analyzed to understand the target etched behavior. The sputtering-induced etching of the Ti target, from shallow to deep regions, changes from the preferential sputtering of scratches and other defects in the edge area to the surface sputtering pits, with discontinuous distribution and uneven size, to grain boundary sputtering and, finally, to closely packed grain surface sputtering. The etching behavior of different regions exhibits different characteristics, mainly showing selective sputtering. The surface roughness of the sputtered area initially increases with the increase of sputtering depth and plasma density, followed by a slight decrease. Moreover, different degrees of incomplete recrystallization occur in different sputtering areas due to the uneven distribution of plasma on the target surface. The grain size increased from the transition area between sputtering and non-sputtering (112 μm) to the deepest sputtering area (139 μm). Moreover, the relationship between the cross-sectional grain size and sputter surface roughness renders a correlation coefficient of 0.802, indicating a strong influence of grain size on surface roughness. Therefore, it is of utmost importance to refine grains and increase the sputtering yield of the target as well as reduce the surface roughness of the target after etching to obtain a high-quality thin film.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08726-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Correlation coefficients ; Crystal defects ; Electronics and Microelectronics ; Etching ; Flat panel displays ; Grain boundaries ; Grain size ; Grooves ; Instrumentation ; Integrated circuits ; Magnetron sputtering ; Materials Science ; Morphology ; Optical and Electronic Materials ; Original Research Article ; Plasma density ; Recrystallization ; Solar energy ; Solid State Physics ; Surface roughness ; Thin films ; Titanium</subject><ispartof>Journal of electronic materials, 2021-04, Vol.50 (4), p.2409-2416</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-57b5d5b05b281a53d7ea63f9d582bab8ee40c47917939900aa72d9b02951b8633</citedby><cites>FETCH-LOGICAL-c358t-57b5d5b05b281a53d7ea63f9d582bab8ee40c47917939900aa72d9b02951b8633</cites><orcidid>0000-0002-6787-6512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08726-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08726-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Wen-hao</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Bao, Ming-dong</creatorcontrib><creatorcontrib>Chang, Yong-qiang</creatorcontrib><creatorcontrib>Wang, Yu-peng</creatorcontrib><creatorcontrib>Zhao, Guo-hua</creatorcontrib><creatorcontrib>Zhang, Li-jun</creatorcontrib><title>Surface Morphology and Sputtering Mechanism of Etched Areas of a Metallic Target by Magnetron Sputtering</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>As an important functional thin-film material in the field of electronic information, high-purity titanium (Ti) is widely used in different industries, such as integrated circuits, flat-panel displays and solar energy, indicating the importance of further research on Ti targets. Herein, a titanium target is placed in a UDP-650 closed-field nonequilibrium magnetron sputtering ion coating machine for deep etching to form racetrack grooves, and different positions of etching grooves are analyzed to understand the target etched behavior. The sputtering-induced etching of the Ti target, from shallow to deep regions, changes from the preferential sputtering of scratches and other defects in the edge area to the surface sputtering pits, with discontinuous distribution and uneven size, to grain boundary sputtering and, finally, to closely packed grain surface sputtering. The etching behavior of different regions exhibits different characteristics, mainly showing selective sputtering. The surface roughness of the sputtered area initially increases with the increase of sputtering depth and plasma density, followed by a slight decrease. Moreover, different degrees of incomplete recrystallization occur in different sputtering areas due to the uneven distribution of plasma on the target surface. The grain size increased from the transition area between sputtering and non-sputtering (112 μm) to the deepest sputtering area (139 μm). Moreover, the relationship between the cross-sectional grain size and sputter surface roughness renders a correlation coefficient of 0.802, indicating a strong influence of grain size on surface roughness. Therefore, it is of utmost importance to refine grains and increase the sputtering yield of the target as well as reduce the surface roughness of the target after etching to obtain a high-quality thin film.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Correlation coefficients</subject><subject>Crystal defects</subject><subject>Electronics and Microelectronics</subject><subject>Etching</subject><subject>Flat panel displays</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Grooves</subject><subject>Instrumentation</subject><subject>Integrated circuits</subject><subject>Magnetron sputtering</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Plasma density</subject><subject>Recrystallization</subject><subject>Solar energy</subject><subject>Solid State Physics</subject><subject>Surface roughness</subject><subject>Thin films</subject><subject>Titanium</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwscQ6s7dhxjlVVfiQqDi0SN8tOnCZVGgfbOfTtSQkSnDitVjszq_kQuiVwTwCyh0CIEGkCFBKQGRUJPUMzwlOWECk-ztEMmCAJp4xfoqsQ9gCEE0lmqN4MvtKFxWvn-9q1bnfEuivxph9itL7pdnhti1p3TThgV-FVLGpb4oW3Opx2PZ6jbtumwFvtdzZic8Rrvets9K77E3ONLirdBnvzM-fo_XG1XT4nr29PL8vFa1IwLmPCM8NLboAbKonmrMysFqzKSy6p0UZam0KRZjnJcpbnAFpntMwN0JwTIwVjc3Q35fbefQ42RLV3g-_Gl4pyoFxwSfioopOq8C4EbyvV--ag_VERUCeiaiKqRqLqm6iio4lNptCfGln_G_2P6wtaa3jf</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yang, Wen-hao</creator><creator>Tang, Bin</creator><creator>Bao, Ming-dong</creator><creator>Chang, Yong-qiang</creator><creator>Wang, Yu-peng</creator><creator>Zhao, Guo-hua</creator><creator>Zhang, Li-jun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-6787-6512</orcidid></search><sort><creationdate>20210401</creationdate><title>Surface Morphology and Sputtering Mechanism of Etched Areas of a Metallic Target by Magnetron Sputtering</title><author>Yang, Wen-hao ; Tang, Bin ; Bao, Ming-dong ; Chang, Yong-qiang ; Wang, Yu-peng ; Zhao, Guo-hua ; Zhang, Li-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-57b5d5b05b281a53d7ea63f9d582bab8ee40c47917939900aa72d9b02951b8633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Correlation coefficients</topic><topic>Crystal defects</topic><topic>Electronics and Microelectronics</topic><topic>Etching</topic><topic>Flat panel displays</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Grooves</topic><topic>Instrumentation</topic><topic>Integrated circuits</topic><topic>Magnetron sputtering</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Plasma density</topic><topic>Recrystallization</topic><topic>Solar energy</topic><topic>Solid State Physics</topic><topic>Surface roughness</topic><topic>Thin films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wen-hao</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Bao, Ming-dong</creatorcontrib><creatorcontrib>Chang, Yong-qiang</creatorcontrib><creatorcontrib>Wang, Yu-peng</creatorcontrib><creatorcontrib>Zhao, Guo-hua</creatorcontrib><creatorcontrib>Zhang, Li-jun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wen-hao</au><au>Tang, Bin</au><au>Bao, Ming-dong</au><au>Chang, Yong-qiang</au><au>Wang, Yu-peng</au><au>Zhao, Guo-hua</au><au>Zhang, Li-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Morphology and Sputtering Mechanism of Etched Areas of a Metallic Target by Magnetron Sputtering</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>50</volume><issue>4</issue><spage>2409</spage><epage>2416</epage><pages>2409-2416</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>As an important functional thin-film material in the field of electronic information, high-purity titanium (Ti) is widely used in different industries, such as integrated circuits, flat-panel displays and solar energy, indicating the importance of further research on Ti targets. Herein, a titanium target is placed in a UDP-650 closed-field nonequilibrium magnetron sputtering ion coating machine for deep etching to form racetrack grooves, and different positions of etching grooves are analyzed to understand the target etched behavior. The sputtering-induced etching of the Ti target, from shallow to deep regions, changes from the preferential sputtering of scratches and other defects in the edge area to the surface sputtering pits, with discontinuous distribution and uneven size, to grain boundary sputtering and, finally, to closely packed grain surface sputtering. The etching behavior of different regions exhibits different characteristics, mainly showing selective sputtering. The surface roughness of the sputtered area initially increases with the increase of sputtering depth and plasma density, followed by a slight decrease. Moreover, different degrees of incomplete recrystallization occur in different sputtering areas due to the uneven distribution of plasma on the target surface. The grain size increased from the transition area between sputtering and non-sputtering (112 μm) to the deepest sputtering area (139 μm). Moreover, the relationship between the cross-sectional grain size and sputter surface roughness renders a correlation coefficient of 0.802, indicating a strong influence of grain size on surface roughness. Therefore, it is of utmost importance to refine grains and increase the sputtering yield of the target as well as reduce the surface roughness of the target after etching to obtain a high-quality thin film.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08726-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6787-6512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-04, Vol.50 (4), p.2409-2416
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2502565815
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Correlation coefficients
Crystal defects
Electronics and Microelectronics
Etching
Flat panel displays
Grain boundaries
Grain size
Grooves
Instrumentation
Integrated circuits
Magnetron sputtering
Materials Science
Morphology
Optical and Electronic Materials
Original Research Article
Plasma density
Recrystallization
Solar energy
Solid State Physics
Surface roughness
Thin films
Titanium
title Surface Morphology and Sputtering Mechanism of Etched Areas of a Metallic Target by Magnetron Sputtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Morphology%20and%20Sputtering%20Mechanism%20of%20Etched%20Areas%20of%20a%20Metallic%20Target%20by%20Magnetron%20Sputtering&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Yang,%20Wen-hao&rft.date=2021-04-01&rft.volume=50&rft.issue=4&rft.spage=2409&rft.epage=2416&rft.pages=2409-2416&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08726-2&rft_dat=%3Cproquest_cross%3E2502565815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502565815&rft_id=info:pmid/&rfr_iscdi=true