Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles

In the current investigation, it is demonstrated that the absorption of an organic–inorganic hybrid crystalline-based CH 3 NH 3 PbX 3 perovskite solar cell can be amply enhanced using noble metal nanoparticles that are coupled in double and triple formation. Due to boosted localized surface plasmon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-04, Vol.50 (4), p.1817-1826
Hauptverfasser: Heidarzadeh, Hamid, Tavousi, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1826
container_issue 4
container_start_page 1817
container_title Journal of electronic materials
container_volume 50
creator Heidarzadeh, Hamid
Tavousi, Alireza
description In the current investigation, it is demonstrated that the absorption of an organic–inorganic hybrid crystalline-based CH 3 NH 3 PbX 3 perovskite solar cell can be amply enhanced using noble metal nanoparticles that are coupled in double and triple formation. Due to boosted localized surface plasmon resonance (LSPR), the photocurrent is anticipated to improve. At first, by the incorporation of Ag-Au core–shell nanoparticles, the absorption spectrum of an ultrathin perovskite solar cell is calculated. The results show that the photocurrent is increased to 16.45 mA/cm 3 for a cell with a thickness of 100 nm, with an enhancement factor of 22.67% in comparison to the reference cell. Using the proposed arrangement of nanoparticles inside the designated perovskite material, its photocurrent density rises from 13.41 mA/cm 2 to 19.81 mA/cm 2 and 20.2 mA/cm 2 for the double and triple arrangement of nanoparticles, respectively. This improves the photocurrent ratio from 22.67% up to 47% and 50.63%, respectively. Moreover, the boosted photon absorption is confirmed through the electrical field distribution illustration.
doi_str_mv 10.1007/s11664-020-08612-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502565769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502565769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-395dcf92ea88877d008d5515f7138ea5cab3107c05ffa7a510775d1fc887c5cc3</originalsourceid><addsrcrecordid>eNp9kMFOAjEURRujiYj-gKsmrqvtlDdTlmZAISFIBBJ2Tel0YHBsx3YwGH_eKibuXL27OPe-5CB0zegtozS7C4ylaY_QhBIqUpaQwwnqMOhxwkS6OkUdylNGIOFwji5C2FHKgAnWQZ8DE6qNxa7EyuLJfPZMhnarrDYFXtatV-22sjgf8emIz9YrjmfGu_fwUrUGz12tPM5NXeOx1c43LuKV3eCB269rEwcLvPBVE2Pu9vEUeKqsa5RvK12bcInOSlUHc_V7u2j5MFzkIzJ5ehzn9xOiuYCW8D4UuuwnRgkhsqygVBQADMqMcWEUaLXmjGaaQlmqTEHMGRSs1JHWoDXvopvjbuPd296EVu7c3tv4UiZAE0ghS_uRSo6U9i4Eb0rZ-OpV-Q_JqPyWLI-SZZQsfyTLQyzxYylE2G6M_5v-p_UFKBp_9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502565769</pqid></control><display><type>article</type><title>Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Heidarzadeh, Hamid ; Tavousi, Alireza</creator><creatorcontrib>Heidarzadeh, Hamid ; Tavousi, Alireza</creatorcontrib><description>In the current investigation, it is demonstrated that the absorption of an organic–inorganic hybrid crystalline-based CH 3 NH 3 PbX 3 perovskite solar cell can be amply enhanced using noble metal nanoparticles that are coupled in double and triple formation. Due to boosted localized surface plasmon resonance (LSPR), the photocurrent is anticipated to improve. At first, by the incorporation of Ag-Au core–shell nanoparticles, the absorption spectrum of an ultrathin perovskite solar cell is calculated. The results show that the photocurrent is increased to 16.45 mA/cm 3 for a cell with a thickness of 100 nm, with an enhancement factor of 22.67% in comparison to the reference cell. Using the proposed arrangement of nanoparticles inside the designated perovskite material, its photocurrent density rises from 13.41 mA/cm 2 to 19.81 mA/cm 2 and 20.2 mA/cm 2 for the double and triple arrangement of nanoparticles, respectively. This improves the photocurrent ratio from 22.67% up to 47% and 50.63%, respectively. Moreover, the boosted photon absorption is confirmed through the electrical field distribution illustration.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08612-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Core-shell particles ; Electronics and Microelectronics ; Gold ; Instrumentation ; Materials Science ; Nanoparticles ; Noble metals ; Optical and Electronic Materials ; Perovskites ; Photoelectric effect ; Photoelectric emission ; Photon absorption ; Photovoltaic cells ; Progress and Challenges of Perovskite Materials and Devices ; Progress and Challenges With Stability ; Scalability of Perovskite Materials and Devices ; Silver ; Solar cells ; Solid State Physics ; Sustainability ; Toxicity</subject><ispartof>Journal of electronic materials, 2021-04, Vol.50 (4), p.1817-1826</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-395dcf92ea88877d008d5515f7138ea5cab3107c05ffa7a510775d1fc887c5cc3</citedby><cites>FETCH-LOGICAL-c385t-395dcf92ea88877d008d5515f7138ea5cab3107c05ffa7a510775d1fc887c5cc3</cites><orcidid>0000-0003-4082-6686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08612-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08612-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Heidarzadeh, Hamid</creatorcontrib><creatorcontrib>Tavousi, Alireza</creatorcontrib><title>Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In the current investigation, it is demonstrated that the absorption of an organic–inorganic hybrid crystalline-based CH 3 NH 3 PbX 3 perovskite solar cell can be amply enhanced using noble metal nanoparticles that are coupled in double and triple formation. Due to boosted localized surface plasmon resonance (LSPR), the photocurrent is anticipated to improve. At first, by the incorporation of Ag-Au core–shell nanoparticles, the absorption spectrum of an ultrathin perovskite solar cell is calculated. The results show that the photocurrent is increased to 16.45 mA/cm 3 for a cell with a thickness of 100 nm, with an enhancement factor of 22.67% in comparison to the reference cell. Using the proposed arrangement of nanoparticles inside the designated perovskite material, its photocurrent density rises from 13.41 mA/cm 2 to 19.81 mA/cm 2 and 20.2 mA/cm 2 for the double and triple arrangement of nanoparticles, respectively. This improves the photocurrent ratio from 22.67% up to 47% and 50.63%, respectively. Moreover, the boosted photon absorption is confirmed through the electrical field distribution illustration.</description><subject>Absorption spectra</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Core-shell particles</subject><subject>Electronics and Microelectronics</subject><subject>Gold</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Optical and Electronic Materials</subject><subject>Perovskites</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photon absorption</subject><subject>Photovoltaic cells</subject><subject>Progress and Challenges of Perovskite Materials and Devices</subject><subject>Progress and Challenges With Stability</subject><subject>Scalability of Perovskite Materials and Devices</subject><subject>Silver</subject><subject>Solar cells</subject><subject>Solid State Physics</subject><subject>Sustainability</subject><subject>Toxicity</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFOAjEURRujiYj-gKsmrqvtlDdTlmZAISFIBBJ2Tel0YHBsx3YwGH_eKibuXL27OPe-5CB0zegtozS7C4ylaY_QhBIqUpaQwwnqMOhxwkS6OkUdylNGIOFwji5C2FHKgAnWQZ8DE6qNxa7EyuLJfPZMhnarrDYFXtatV-22sjgf8emIz9YrjmfGu_fwUrUGz12tPM5NXeOx1c43LuKV3eCB269rEwcLvPBVE2Pu9vEUeKqsa5RvK12bcInOSlUHc_V7u2j5MFzkIzJ5ehzn9xOiuYCW8D4UuuwnRgkhsqygVBQADMqMcWEUaLXmjGaaQlmqTEHMGRSs1JHWoDXvopvjbuPd296EVu7c3tv4UiZAE0ghS_uRSo6U9i4Eb0rZ-OpV-Q_JqPyWLI-SZZQsfyTLQyzxYylE2G6M_5v-p_UFKBp_9Q</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Heidarzadeh, Hamid</creator><creator>Tavousi, Alireza</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-4082-6686</orcidid></search><sort><creationdate>20210401</creationdate><title>Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles</title><author>Heidarzadeh, Hamid ; Tavousi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-395dcf92ea88877d008d5515f7138ea5cab3107c05ffa7a510775d1fc887c5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Core-shell particles</topic><topic>Electronics and Microelectronics</topic><topic>Gold</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Optical and Electronic Materials</topic><topic>Perovskites</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photon absorption</topic><topic>Photovoltaic cells</topic><topic>Progress and Challenges of Perovskite Materials and Devices</topic><topic>Progress and Challenges With Stability</topic><topic>Scalability of Perovskite Materials and Devices</topic><topic>Silver</topic><topic>Solar cells</topic><topic>Solid State Physics</topic><topic>Sustainability</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidarzadeh, Hamid</creatorcontrib><creatorcontrib>Tavousi, Alireza</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidarzadeh, Hamid</au><au>Tavousi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>50</volume><issue>4</issue><spage>1817</spage><epage>1826</epage><pages>1817-1826</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>In the current investigation, it is demonstrated that the absorption of an organic–inorganic hybrid crystalline-based CH 3 NH 3 PbX 3 perovskite solar cell can be amply enhanced using noble metal nanoparticles that are coupled in double and triple formation. Due to boosted localized surface plasmon resonance (LSPR), the photocurrent is anticipated to improve. At first, by the incorporation of Ag-Au core–shell nanoparticles, the absorption spectrum of an ultrathin perovskite solar cell is calculated. The results show that the photocurrent is increased to 16.45 mA/cm 3 for a cell with a thickness of 100 nm, with an enhancement factor of 22.67% in comparison to the reference cell. Using the proposed arrangement of nanoparticles inside the designated perovskite material, its photocurrent density rises from 13.41 mA/cm 2 to 19.81 mA/cm 2 and 20.2 mA/cm 2 for the double and triple arrangement of nanoparticles, respectively. This improves the photocurrent ratio from 22.67% up to 47% and 50.63%, respectively. Moreover, the boosted photon absorption is confirmed through the electrical field distribution illustration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08612-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4082-6686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-04, Vol.50 (4), p.1817-1826
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2502565769
source SpringerLink Journals - AutoHoldings
subjects Absorption spectra
Characterization and Evaluation of Materials
Chemistry and Materials Science
Core-shell particles
Electronics and Microelectronics
Gold
Instrumentation
Materials Science
Nanoparticles
Noble metals
Optical and Electronic Materials
Perovskites
Photoelectric effect
Photoelectric emission
Photon absorption
Photovoltaic cells
Progress and Challenges of Perovskite Materials and Devices
Progress and Challenges With Stability
Scalability of Perovskite Materials and Devices
Silver
Solar cells
Solid State Physics
Sustainability
Toxicity
title Design of an LSPR-Enhanced Ultrathin CH3NH3PbX3 Perovskite Solar Cell Incorporating Double and Triple Coupled Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20LSPR-Enhanced%20Ultrathin%20CH3NH3PbX3%20Perovskite%20Solar%20Cell%20Incorporating%20Double%20and%20Triple%20Coupled%20Nanoparticles&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Heidarzadeh,%20Hamid&rft.date=2021-04-01&rft.volume=50&rft.issue=4&rft.spage=1817&rft.epage=1826&rft.pages=1817-1826&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08612-x&rft_dat=%3Cproquest_cross%3E2502565769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502565769&rft_id=info:pmid/&rfr_iscdi=true