Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides

In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO 3 were prepared by in-situ polymerization. BaTiO 3 nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-03, Vol.32 (5), p.5886-5897
Hauptverfasser: Pu, Linyu, Tang, Jingyuan, Gu, Xiaochun, Jin, Tingting, Zeng, Benlan, Liu, Jingsong, Huang, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5897
container_issue 5
container_start_page 5886
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Pu, Linyu
Tang, Jingyuan
Gu, Xiaochun
Jin, Tingting
Zeng, Benlan
Liu, Jingsong
Huang, Xu
description In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO 3 were prepared by in-situ polymerization. BaTiO 3 nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm −3 under 180 MV m −1 , which is 2.4 times higher than that of pristine PI (0.97 J cm −3 at 180 MV m −1 ). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm −3 at 180 MV m −1 . To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a η of 70.45% (180 MV m −1 ) and discharge energy density of 1.03 J cm −3 at 180 MV m −1 .
doi_str_mv 10.1007/s10854-021-05309-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502565746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502565746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgOppJJpPpUusvFLqp4C5kkps2ZZqMyRTpznfwDX0SRyu4c3Xh8p3vcg9C5wW9LCiVV7mgtSgJZQWhgtMJkQdoVAjJSVmzl0M0ohMhSSkYO0YnOa8ppVXJ6xHa3npowfTJG6yDxRAgLXc49zHpJeAuxQ5S7yHj6HDQIZq46WL2_bB58_0Km5jg8_0jr6BtcaeTds4HAmHpA0ACi2_0ws859gF3sd35jbeQT9GR022Gs985Rs_3d4vpI5nNH56m1zNieDHpCWs4bxoLTVk7AbXjWjjbOCMaXlFnTcUsUCmdNFbXFhxjlRV1QXXJJoZpzsfoYt87_PG6hdyrddymMJxUTFAmKiHLakixfcqkmHMCp7rkNzrtVEHVt16116sGvepHr5IDxPdQHsJhCemv-h_qC-VZgeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502565746</pqid></control><display><type>article</type><title>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pu, Linyu ; Tang, Jingyuan ; Gu, Xiaochun ; Jin, Tingting ; Zeng, Benlan ; Liu, Jingsong ; Huang, Xu</creator><creatorcontrib>Pu, Linyu ; Tang, Jingyuan ; Gu, Xiaochun ; Jin, Tingting ; Zeng, Benlan ; Liu, Jingsong ; Huang, Xu</creatorcontrib><description>In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO 3 were prepared by in-situ polymerization. BaTiO 3 nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm −3 under 180 MV m −1 , which is 2.4 times higher than that of pristine PI (0.97 J cm −3 at 180 MV m −1 ). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm −3 at 180 MV m −1 . To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a η of 70.45% (180 MV m −1 ) and discharge energy density of 1.03 J cm −3 at 180 MV m −1 .</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05309-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium titanates ; Characterization and Evaluation of Materials ; Charge efficiency ; Chemistry and Materials Science ; Core-shell structure ; Discharge ; Energy storage ; Fillers ; Flux density ; Materials Science ; Nanocomposites ; Optical and Electronic Materials ; Paraffins ; Polyimide resins</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (5), p.5886-5897</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</citedby><cites>FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</cites><orcidid>0000-0003-0414-6114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05309-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05309-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pu, Linyu</creatorcontrib><creatorcontrib>Tang, Jingyuan</creatorcontrib><creatorcontrib>Gu, Xiaochun</creatorcontrib><creatorcontrib>Jin, Tingting</creatorcontrib><creatorcontrib>Zeng, Benlan</creatorcontrib><creatorcontrib>Liu, Jingsong</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><title>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO 3 were prepared by in-situ polymerization. BaTiO 3 nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm −3 under 180 MV m −1 , which is 2.4 times higher than that of pristine PI (0.97 J cm −3 at 180 MV m −1 ). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm −3 at 180 MV m −1 . To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a η of 70.45% (180 MV m −1 ) and discharge energy density of 1.03 J cm −3 at 180 MV m −1 .</description><subject>Barium titanates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge efficiency</subject><subject>Chemistry and Materials Science</subject><subject>Core-shell structure</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>Fillers</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Paraffins</subject><subject>Polyimide resins</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgOppJJpPpUusvFLqp4C5kkps2ZZqMyRTpznfwDX0SRyu4c3Xh8p3vcg9C5wW9LCiVV7mgtSgJZQWhgtMJkQdoVAjJSVmzl0M0ohMhSSkYO0YnOa8ppVXJ6xHa3npowfTJG6yDxRAgLXc49zHpJeAuxQ5S7yHj6HDQIZq46WL2_bB58_0Km5jg8_0jr6BtcaeTds4HAmHpA0ACi2_0ws859gF3sd35jbeQT9GR022Gs985Rs_3d4vpI5nNH56m1zNieDHpCWs4bxoLTVk7AbXjWjjbOCMaXlFnTcUsUCmdNFbXFhxjlRV1QXXJJoZpzsfoYt87_PG6hdyrddymMJxUTFAmKiHLakixfcqkmHMCp7rkNzrtVEHVt16116sGvepHr5IDxPdQHsJhCemv-h_qC-VZgeo</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Pu, Linyu</creator><creator>Tang, Jingyuan</creator><creator>Gu, Xiaochun</creator><creator>Jin, Tingting</creator><creator>Zeng, Benlan</creator><creator>Liu, Jingsong</creator><creator>Huang, Xu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0414-6114</orcidid></search><sort><creationdate>20210301</creationdate><title>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</title><author>Pu, Linyu ; Tang, Jingyuan ; Gu, Xiaochun ; Jin, Tingting ; Zeng, Benlan ; Liu, Jingsong ; Huang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium titanates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge efficiency</topic><topic>Chemistry and Materials Science</topic><topic>Core-shell structure</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>Fillers</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Paraffins</topic><topic>Polyimide resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Linyu</creatorcontrib><creatorcontrib>Tang, Jingyuan</creatorcontrib><creatorcontrib>Gu, Xiaochun</creatorcontrib><creatorcontrib>Jin, Tingting</creatorcontrib><creatorcontrib>Zeng, Benlan</creatorcontrib><creatorcontrib>Liu, Jingsong</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Linyu</au><au>Tang, Jingyuan</au><au>Gu, Xiaochun</au><au>Jin, Tingting</au><au>Zeng, Benlan</au><au>Liu, Jingsong</au><au>Huang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>5</issue><spage>5886</spage><epage>5897</epage><pages>5886-5897</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO 3 were prepared by in-situ polymerization. BaTiO 3 nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm −3 under 180 MV m −1 , which is 2.4 times higher than that of pristine PI (0.97 J cm −3 at 180 MV m −1 ). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm −3 at 180 MV m −1 . To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a η of 70.45% (180 MV m −1 ) and discharge energy density of 1.03 J cm −3 at 180 MV m −1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05309-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0414-6114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-03, Vol.32 (5), p.5886-5897
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2502565746
source SpringerLink Journals - AutoHoldings
subjects Barium titanates
Characterization and Evaluation of Materials
Charge efficiency
Chemistry and Materials Science
Core-shell structure
Discharge
Energy storage
Fillers
Flux density
Materials Science
Nanocomposites
Optical and Electronic Materials
Paraffins
Polyimide resins
title Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20and%20energy%20storage%20properties%20of%20nanocomposites%20with%20core%E2%80%93shell%20paraffin-engineered%20BaTiO3%20in%20polyimides&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Pu,%20Linyu&rft.date=2021-03-01&rft.volume=32&rft.issue=5&rft.spage=5886&rft.epage=5897&rft.pages=5886-5897&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05309-7&rft_dat=%3Cproquest_cross%3E2502565746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502565746&rft_id=info:pmid/&rfr_iscdi=true