Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides
In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO 3 were prepared by in-situ polymerization. BaTiO 3 nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of par...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-03, Vol.32 (5), p.5886-5897 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5897 |
---|---|
container_issue | 5 |
container_start_page | 5886 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Pu, Linyu Tang, Jingyuan Gu, Xiaochun Jin, Tingting Zeng, Benlan Liu, Jingsong Huang, Xu |
description | In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO
3
were prepared by in-situ polymerization. BaTiO
3
nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm
−3
under 180 MV m
−1
, which is 2.4 times higher than that of pristine PI (0.97 J cm
−3
at 180 MV m
−1
). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm
−3
at 180 MV m
−1
. To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a
η
of 70.45% (180 MV m
−1
) and discharge energy density of 1.03 J cm
−3
at 180 MV m
−1
. |
doi_str_mv | 10.1007/s10854-021-05309-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502565746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502565746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgOppJJpPpUusvFLqp4C5kkps2ZZqMyRTpznfwDX0SRyu4c3Xh8p3vcg9C5wW9LCiVV7mgtSgJZQWhgtMJkQdoVAjJSVmzl0M0ohMhSSkYO0YnOa8ppVXJ6xHa3npowfTJG6yDxRAgLXc49zHpJeAuxQ5S7yHj6HDQIZq46WL2_bB58_0Km5jg8_0jr6BtcaeTds4HAmHpA0ACi2_0ws859gF3sd35jbeQT9GR022Gs985Rs_3d4vpI5nNH56m1zNieDHpCWs4bxoLTVk7AbXjWjjbOCMaXlFnTcUsUCmdNFbXFhxjlRV1QXXJJoZpzsfoYt87_PG6hdyrddymMJxUTFAmKiHLakixfcqkmHMCp7rkNzrtVEHVt16116sGvepHr5IDxPdQHsJhCemv-h_qC-VZgeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502565746</pqid></control><display><type>article</type><title>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pu, Linyu ; Tang, Jingyuan ; Gu, Xiaochun ; Jin, Tingting ; Zeng, Benlan ; Liu, Jingsong ; Huang, Xu</creator><creatorcontrib>Pu, Linyu ; Tang, Jingyuan ; Gu, Xiaochun ; Jin, Tingting ; Zeng, Benlan ; Liu, Jingsong ; Huang, Xu</creatorcontrib><description>In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO
3
were prepared by in-situ polymerization. BaTiO
3
nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm
−3
under 180 MV m
−1
, which is 2.4 times higher than that of pristine PI (0.97 J cm
−3
at 180 MV m
−1
). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm
−3
at 180 MV m
−1
. To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a
η
of 70.45% (180 MV m
−1
) and discharge energy density of 1.03 J cm
−3
at 180 MV m
−1
.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05309-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium titanates ; Characterization and Evaluation of Materials ; Charge efficiency ; Chemistry and Materials Science ; Core-shell structure ; Discharge ; Energy storage ; Fillers ; Flux density ; Materials Science ; Nanocomposites ; Optical and Electronic Materials ; Paraffins ; Polyimide resins</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (5), p.5886-5897</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</citedby><cites>FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</cites><orcidid>0000-0003-0414-6114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05309-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05309-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pu, Linyu</creatorcontrib><creatorcontrib>Tang, Jingyuan</creatorcontrib><creatorcontrib>Gu, Xiaochun</creatorcontrib><creatorcontrib>Jin, Tingting</creatorcontrib><creatorcontrib>Zeng, Benlan</creatorcontrib><creatorcontrib>Liu, Jingsong</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><title>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO
3
were prepared by in-situ polymerization. BaTiO
3
nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm
−3
under 180 MV m
−1
, which is 2.4 times higher than that of pristine PI (0.97 J cm
−3
at 180 MV m
−1
). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm
−3
at 180 MV m
−1
. To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a
η
of 70.45% (180 MV m
−1
) and discharge energy density of 1.03 J cm
−3
at 180 MV m
−1
.</description><subject>Barium titanates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge efficiency</subject><subject>Chemistry and Materials Science</subject><subject>Core-shell structure</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>Fillers</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Paraffins</subject><subject>Polyimide resins</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgOppJJpPpUusvFLqp4C5kkps2ZZqMyRTpznfwDX0SRyu4c3Xh8p3vcg9C5wW9LCiVV7mgtSgJZQWhgtMJkQdoVAjJSVmzl0M0ohMhSSkYO0YnOa8ppVXJ6xHa3npowfTJG6yDxRAgLXc49zHpJeAuxQ5S7yHj6HDQIZq46WL2_bB58_0Km5jg8_0jr6BtcaeTds4HAmHpA0ACi2_0ws859gF3sd35jbeQT9GR022Gs985Rs_3d4vpI5nNH56m1zNieDHpCWs4bxoLTVk7AbXjWjjbOCMaXlFnTcUsUCmdNFbXFhxjlRV1QXXJJoZpzsfoYt87_PG6hdyrddymMJxUTFAmKiHLakixfcqkmHMCp7rkNzrtVEHVt16116sGvepHr5IDxPdQHsJhCemv-h_qC-VZgeo</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Pu, Linyu</creator><creator>Tang, Jingyuan</creator><creator>Gu, Xiaochun</creator><creator>Jin, Tingting</creator><creator>Zeng, Benlan</creator><creator>Liu, Jingsong</creator><creator>Huang, Xu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0414-6114</orcidid></search><sort><creationdate>20210301</creationdate><title>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</title><author>Pu, Linyu ; Tang, Jingyuan ; Gu, Xiaochun ; Jin, Tingting ; Zeng, Benlan ; Liu, Jingsong ; Huang, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2b33bbdeb48f5e8f3a5fdbfc5b360fdc62de077f7cda8def226d5810a429c2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium titanates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge efficiency</topic><topic>Chemistry and Materials Science</topic><topic>Core-shell structure</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>Fillers</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Paraffins</topic><topic>Polyimide resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Linyu</creatorcontrib><creatorcontrib>Tang, Jingyuan</creatorcontrib><creatorcontrib>Gu, Xiaochun</creatorcontrib><creatorcontrib>Jin, Tingting</creatorcontrib><creatorcontrib>Zeng, Benlan</creatorcontrib><creatorcontrib>Liu, Jingsong</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Linyu</au><au>Tang, Jingyuan</au><au>Gu, Xiaochun</au><au>Jin, Tingting</au><au>Zeng, Benlan</au><au>Liu, Jingsong</au><au>Huang, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>5</issue><spage>5886</spage><epage>5897</epage><pages>5886-5897</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, PI was chosen as polymer matrix, PI composite films embedded with BaTiO
3
were prepared by in-situ polymerization. BaTiO
3
nanofillers were modified with paraffin to form a core–shell structure in order to improve the dispersion and compatibility with PI matrix. The permittivity of paraffin@BT/PI composite films with 40 wt% filler loading increase to 8.0 (1 kHz), which is about 2.4 times higher than that of pristine PI. The composites show stable capacitance in the range of 80 to180 °C. The energy storage density of composites with 40 wt% filler loading is as high as 3.31 J cm
−3
under 180 MV m
−1
, which is 2.4 times higher than that of pristine PI (0.97 J cm
−3
at 180 MV m
−1
). However, the charge–discharge efficiency is 29.03%, and the discharge energy density is only 0.96 J cm
−3
at 180 MV m
−1
. To weigh the pros and cons, the composites with 30 wt% filler loading exhibit a better energy storage property, with a
η
of 70.45% (180 MV m
−1
) and discharge energy density of 1.03 J cm
−3
at 180 MV m
−1
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05309-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0414-6114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-03, Vol.32 (5), p.5886-5897 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2502565746 |
source | SpringerLink Journals - AutoHoldings |
subjects | Barium titanates Characterization and Evaluation of Materials Charge efficiency Chemistry and Materials Science Core-shell structure Discharge Energy storage Fillers Flux density Materials Science Nanocomposites Optical and Electronic Materials Paraffins Polyimide resins |
title | Dielectric and energy storage properties of nanocomposites with core–shell paraffin-engineered BaTiO3 in polyimides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20and%20energy%20storage%20properties%20of%20nanocomposites%20with%20core%E2%80%93shell%20paraffin-engineered%20BaTiO3%20in%20polyimides&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Pu,%20Linyu&rft.date=2021-03-01&rft.volume=32&rft.issue=5&rft.spage=5886&rft.epage=5897&rft.pages=5886-5897&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05309-7&rft_dat=%3Cproquest_cross%3E2502565746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502565746&rft_id=info:pmid/&rfr_iscdi=true |