On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals
The work is devoted to the description of unsteady thermal processes in low-dimensional structures. To obtain the relationship between the microscopic and macroscopic descriptions of solids, it is necessary to understand the heat transfer mechanism at the micro-level. At the latter, in contrast to t...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2021-03, Vol.33 (2), p.485-496 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 2 |
container_start_page | 485 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 33 |
creator | Loboda, O. S. Podolskaya, E. A. Tsvetkov, D. V. Krivtsov, A. M. |
description | The work is devoted to the description of unsteady thermal processes in low-dimensional structures. To obtain the relationship between the microscopic and macroscopic descriptions of solids, it is necessary to understand the heat transfer mechanism at the micro-level. At the latter, in contrast to the macro-level, analytical, numerical, and experimental studies demonstrate significant deviations from the Fourier’s law. The paper bases on the ballistic heat transfer model, according to which the heat is carried by the thermal waves. This effect can be applied, for example, to signal transmission and heat removal problems. The influence of non-nearest neighbors on processes in discrete media, as well as processes in polyatomic lattices, is investigated. To describe the evolution of the initial thermal perturbation, the dispersion characteristics and group velocities in one-dimensional crystal are analyzed for (i) a diatomic chain with variable masses or stiffnesses and for (ii) a monatomic chain with regard for interaction with second neighbors. A fundamental solution to the heat distribution problem for the corresponding crystal models is obtained and investigated. The fundamental solution allows to obtain a description of waves traveling from a point source, and can serve as the basis for constructing all other solutions. In both cases, the solution consists of two thermal fronts moving one after another with different speeds and intensities. Quantitative estimates of the intensity of the thermal wave front are given, and the dynamics of changes in the velocities and intensities of the waves depending on the parameters of the problem is analyzed. Thus, a simple method for estimating the wavefronts intensity is proposed and tested on two models. These results can be used to identify and analyze those parts of the wave processes that are of interest in terms of interpretation of the effects observed in the experiments. |
doi_str_mv | 10.1007/s00161-020-00921-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2502556414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656116681</galeid><sourcerecordid>A656116681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-76dc330ce131a4b8f057f0f065caa31450b7174dd2f6eaa2bff856e562456c3c3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgiMbuc7dhJxqrin1SpC4zIchy7TZU4xU6HfnuOBokNeTjr7v1O7x4h9wwWDKB4TABMMQocKEDF8XdBZiwXnEIlq0syg0pIylghr8lNSntAqJJiRj43IRt3LvPH0JjehdF0WRq649gOIRv8ebZzZszGaELyLmaHONSd67MW58HRpkUqoRrBnYn9EFqb2XhKuCndkiuPxd391jn5eH56X73S9eblbbVcUytkOdJCNVYIsI4JZvK69CALDx6UtMYIlkuoC1bkTcO9csbw2vtSKicVz6Wywoo5eZj2ormvo0uj3g_HiJaS5hK4lCrHMOZkMam2pnO6DX7Aoyy-xvWtxWN8i_2lkooxpUqGAJ8AG4eUovP6ENvexJNmoH9y11PuGnPX59w1ICQmKKE4bF388_IP9Q0zxIXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502556414</pqid></control><display><type>article</type><title>On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Loboda, O. S. ; Podolskaya, E. A. ; Tsvetkov, D. V. ; Krivtsov, A. M.</creator><creatorcontrib>Loboda, O. S. ; Podolskaya, E. A. ; Tsvetkov, D. V. ; Krivtsov, A. M.</creatorcontrib><description>The work is devoted to the description of unsteady thermal processes in low-dimensional structures. To obtain the relationship between the microscopic and macroscopic descriptions of solids, it is necessary to understand the heat transfer mechanism at the micro-level. At the latter, in contrast to the macro-level, analytical, numerical, and experimental studies demonstrate significant deviations from the Fourier’s law. The paper bases on the ballistic heat transfer model, according to which the heat is carried by the thermal waves. This effect can be applied, for example, to signal transmission and heat removal problems. The influence of non-nearest neighbors on processes in discrete media, as well as processes in polyatomic lattices, is investigated. To describe the evolution of the initial thermal perturbation, the dispersion characteristics and group velocities in one-dimensional crystal are analyzed for (i) a diatomic chain with variable masses or stiffnesses and for (ii) a monatomic chain with regard for interaction with second neighbors. A fundamental solution to the heat distribution problem for the corresponding crystal models is obtained and investigated. The fundamental solution allows to obtain a description of waves traveling from a point source, and can serve as the basis for constructing all other solutions. In both cases, the solution consists of two thermal fronts moving one after another with different speeds and intensities. Quantitative estimates of the intensity of the thermal wave front are given, and the dynamics of changes in the velocities and intensities of the waves depending on the parameters of the problem is analyzed. Thus, a simple method for estimating the wavefronts intensity is proposed and tested on two models. These results can be used to identify and analyze those parts of the wave processes that are of interest in terms of interpretation of the effects observed in the experiments.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-020-00921-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chains ; Classical and Continuum Physics ; Crystals ; Dimensional analysis ; Engineering Thermodynamics ; Heat and Mass Transfer ; Heat distribution ; Heat transfer ; Original Article ; Perturbation ; Physics ; Physics and Astronomy ; Point sources ; Signal transmission ; Structural Materials ; Theoretical and Applied Mechanics ; Thermal fronts ; Wave fronts</subject><ispartof>Continuum mechanics and thermodynamics, 2021-03, Vol.33 (2), p.485-496</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-76dc330ce131a4b8f057f0f065caa31450b7174dd2f6eaa2bff856e562456c3c3</citedby><cites>FETCH-LOGICAL-c358t-76dc330ce131a4b8f057f0f065caa31450b7174dd2f6eaa2bff856e562456c3c3</cites><orcidid>0000-0002-3862-4447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-020-00921-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-020-00921-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Loboda, O. S.</creatorcontrib><creatorcontrib>Podolskaya, E. A.</creatorcontrib><creatorcontrib>Tsvetkov, D. V.</creatorcontrib><creatorcontrib>Krivtsov, A. M.</creatorcontrib><title>On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>The work is devoted to the description of unsteady thermal processes in low-dimensional structures. To obtain the relationship between the microscopic and macroscopic descriptions of solids, it is necessary to understand the heat transfer mechanism at the micro-level. At the latter, in contrast to the macro-level, analytical, numerical, and experimental studies demonstrate significant deviations from the Fourier’s law. The paper bases on the ballistic heat transfer model, according to which the heat is carried by the thermal waves. This effect can be applied, for example, to signal transmission and heat removal problems. The influence of non-nearest neighbors on processes in discrete media, as well as processes in polyatomic lattices, is investigated. To describe the evolution of the initial thermal perturbation, the dispersion characteristics and group velocities in one-dimensional crystal are analyzed for (i) a diatomic chain with variable masses or stiffnesses and for (ii) a monatomic chain with regard for interaction with second neighbors. A fundamental solution to the heat distribution problem for the corresponding crystal models is obtained and investigated. The fundamental solution allows to obtain a description of waves traveling from a point source, and can serve as the basis for constructing all other solutions. In both cases, the solution consists of two thermal fronts moving one after another with different speeds and intensities. Quantitative estimates of the intensity of the thermal wave front are given, and the dynamics of changes in the velocities and intensities of the waves depending on the parameters of the problem is analyzed. Thus, a simple method for estimating the wavefronts intensity is proposed and tested on two models. These results can be used to identify and analyze those parts of the wave processes that are of interest in terms of interpretation of the effects observed in the experiments.</description><subject>Chains</subject><subject>Classical and Continuum Physics</subject><subject>Crystals</subject><subject>Dimensional analysis</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Heat distribution</subject><subject>Heat transfer</subject><subject>Original Article</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Point sources</subject><subject>Signal transmission</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal fronts</subject><subject>Wave fronts</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgiMbuc7dhJxqrin1SpC4zIchy7TZU4xU6HfnuOBokNeTjr7v1O7x4h9wwWDKB4TABMMQocKEDF8XdBZiwXnEIlq0syg0pIylghr8lNSntAqJJiRj43IRt3LvPH0JjehdF0WRq649gOIRv8ebZzZszGaELyLmaHONSd67MW58HRpkUqoRrBnYn9EFqb2XhKuCndkiuPxd391jn5eH56X73S9eblbbVcUytkOdJCNVYIsI4JZvK69CALDx6UtMYIlkuoC1bkTcO9csbw2vtSKicVz6Wywoo5eZj2ormvo0uj3g_HiJaS5hK4lCrHMOZkMam2pnO6DX7Aoyy-xvWtxWN8i_2lkooxpUqGAJ8AG4eUovP6ENvexJNmoH9y11PuGnPX59w1ICQmKKE4bF388_IP9Q0zxIXc</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Loboda, O. S.</creator><creator>Podolskaya, E. A.</creator><creator>Tsvetkov, D. V.</creator><creator>Krivtsov, A. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3862-4447</orcidid></search><sort><creationdate>20210301</creationdate><title>On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals</title><author>Loboda, O. S. ; Podolskaya, E. A. ; Tsvetkov, D. V. ; Krivtsov, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-76dc330ce131a4b8f057f0f065caa31450b7174dd2f6eaa2bff856e562456c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chains</topic><topic>Classical and Continuum Physics</topic><topic>Crystals</topic><topic>Dimensional analysis</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Heat distribution</topic><topic>Heat transfer</topic><topic>Original Article</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Point sources</topic><topic>Signal transmission</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal fronts</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loboda, O. S.</creatorcontrib><creatorcontrib>Podolskaya, E. A.</creatorcontrib><creatorcontrib>Tsvetkov, D. V.</creatorcontrib><creatorcontrib>Krivtsov, A. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loboda, O. S.</au><au>Podolskaya, E. A.</au><au>Tsvetkov, D. V.</au><au>Krivtsov, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>485</spage><epage>496</epage><pages>485-496</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>The work is devoted to the description of unsteady thermal processes in low-dimensional structures. To obtain the relationship between the microscopic and macroscopic descriptions of solids, it is necessary to understand the heat transfer mechanism at the micro-level. At the latter, in contrast to the macro-level, analytical, numerical, and experimental studies demonstrate significant deviations from the Fourier’s law. The paper bases on the ballistic heat transfer model, according to which the heat is carried by the thermal waves. This effect can be applied, for example, to signal transmission and heat removal problems. The influence of non-nearest neighbors on processes in discrete media, as well as processes in polyatomic lattices, is investigated. To describe the evolution of the initial thermal perturbation, the dispersion characteristics and group velocities in one-dimensional crystal are analyzed for (i) a diatomic chain with variable masses or stiffnesses and for (ii) a monatomic chain with regard for interaction with second neighbors. A fundamental solution to the heat distribution problem for the corresponding crystal models is obtained and investigated. The fundamental solution allows to obtain a description of waves traveling from a point source, and can serve as the basis for constructing all other solutions. In both cases, the solution consists of two thermal fronts moving one after another with different speeds and intensities. Quantitative estimates of the intensity of the thermal wave front are given, and the dynamics of changes in the velocities and intensities of the waves depending on the parameters of the problem is analyzed. Thus, a simple method for estimating the wavefronts intensity is proposed and tested on two models. These results can be used to identify and analyze those parts of the wave processes that are of interest in terms of interpretation of the effects observed in the experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-020-00921-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3862-4447</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2021-03, Vol.33 (2), p.485-496 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_proquest_journals_2502556414 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chains Classical and Continuum Physics Crystals Dimensional analysis Engineering Thermodynamics Heat and Mass Transfer Heat distribution Heat transfer Original Article Perturbation Physics Physics and Astronomy Point sources Signal transmission Structural Materials Theoretical and Applied Mechanics Thermal fronts Wave fronts |
title | On the fundamental solution of the heat transfer problem in one-dimensional harmonic crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20fundamental%20solution%20of%20the%20heat%20transfer%20problem%20in%20one-dimensional%20harmonic%20crystals&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Loboda,%20O.%20S.&rft.date=2021-03-01&rft.volume=33&rft.issue=2&rft.spage=485&rft.epage=496&rft.pages=485-496&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-020-00921-0&rft_dat=%3Cgale_proqu%3EA656116681%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502556414&rft_id=info:pmid/&rft_galeid=A656116681&rfr_iscdi=true |