Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy

Terahertz (THz) spin-to-charge conversion has become an increasingly important process for THz pulse generation and as a tool to probe ultrafast spin interactions at magnetic interfaces. However, its relation to traditional, steady state, ferromagnetic resonance techniques is poorly understood. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Hawecker, Jacques, Dang, T H, Rongione, Enzo, Boust, James, Collin, Sophie, George, Jean-Marie, Henri-Jean Drouhin, Laplace, Yannis, Grasset, Romain, Dong, Jingwei, Mangeney, Juliette, Tignon, Jerome, Jaffrès, Henri, Perfetti, Luca, Dhillon, Sukhdeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hawecker, Jacques
Dang, T H
Rongione, Enzo
Boust, James
Collin, Sophie
George, Jean-Marie
Henri-Jean Drouhin
Laplace, Yannis
Grasset, Romain
Dong, Jingwei
Mangeney, Juliette
Tignon, Jerome
Jaffrès, Henri
Perfetti, Luca
Dhillon, Sukhdeep
description Terahertz (THz) spin-to-charge conversion has become an increasingly important process for THz pulse generation and as a tool to probe ultrafast spin interactions at magnetic interfaces. However, its relation to traditional, steady state, ferromagnetic resonance techniques is poorly understood. Here we investigate nanometric trilayers of Co/X/Pt (X=Ti, Au or Au0:85W0:15) as a function of the 'X' layer thickness, where THz emission generated by the inverse spin Hall effect is compared to the Gilbert damping of the ferromagnetic resonance. Through the insertion of the 'X' layer we show that the ultrafast spin current injected in the non-magnetic layer defines a direct spin conductance, whereas the Gilbert damping leads to an effective spin mixing-conductance of the trilayer. Importantly, we show that these two parameters are connected to each other and that spin-memory losses can be modeled via an effective Hamiltonian with Rashba fields. This work highlights that magneto-circuits concepts can be successfully extended to ultrafast spintronic devices, as well as enhancing the understanding of spin-to-charge conversion processes through the complementarity between ultrafast THz spectroscopy and steady state techniques.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2502513026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502513026</sourcerecordid><originalsourceid>FETCH-proquest_journals_25025130263</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMgWLR3-OC6kCZG3YvSvd2XGn8gpU1ifrqopzeCB3A1i3lvmBUrhJR1dT4IsWEl0cA5F8eTUEoWrL0H68C6AXWy3gEaY7VFpxfoE0yY-nG0OgMJo-k1EoToH_iExwJt8wacLNFXpJAXoiftw7Jja9OPhOUvt2x_u7aXpsrua0ZK3eDn6HLVCcWFqmU-JP-jPso8QQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502513026</pqid></control><display><type>article</type><title>Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy</title><source>Free E- Journals</source><creator>Hawecker, Jacques ; Dang, T H ; Rongione, Enzo ; Boust, James ; Collin, Sophie ; George, Jean-Marie ; Henri-Jean Drouhin ; Laplace, Yannis ; Grasset, Romain ; Dong, Jingwei ; Mangeney, Juliette ; Tignon, Jerome ; Jaffrès, Henri ; Perfetti, Luca ; Dhillon, Sukhdeep</creator><creatorcontrib>Hawecker, Jacques ; Dang, T H ; Rongione, Enzo ; Boust, James ; Collin, Sophie ; George, Jean-Marie ; Henri-Jean Drouhin ; Laplace, Yannis ; Grasset, Romain ; Dong, Jingwei ; Mangeney, Juliette ; Tignon, Jerome ; Jaffrès, Henri ; Perfetti, Luca ; Dhillon, Sukhdeep</creatorcontrib><description>Terahertz (THz) spin-to-charge conversion has become an increasingly important process for THz pulse generation and as a tool to probe ultrafast spin interactions at magnetic interfaces. However, its relation to traditional, steady state, ferromagnetic resonance techniques is poorly understood. Here we investigate nanometric trilayers of Co/X/Pt (X=Ti, Au or Au0:85W0:15) as a function of the 'X' layer thickness, where THz emission generated by the inverse spin Hall effect is compared to the Gilbert damping of the ferromagnetic resonance. Through the insertion of the 'X' layer we show that the ultrafast spin current injected in the non-magnetic layer defines a direct spin conductance, whereas the Gilbert damping leads to an effective spin mixing-conductance of the trilayer. Importantly, we show that these two parameters are connected to each other and that spin-memory losses can be modeled via an effective Hamiltonian with Rashba fields. This work highlights that magneto-circuits concepts can be successfully extended to ultrafast spintronic devices, as well as enhancing the understanding of spin-to-charge conversion processes through the complementarity between ultrafast THz spectroscopy and steady state techniques.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conversion ; Damping ; Ferromagnetic resonance ; Ferromagnetism ; Gold ; Hall effect ; Platinum ; Resistance ; Spectrum analysis ; Spintronics ; Steady state ; Thickness ; Titanium</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hawecker, Jacques</creatorcontrib><creatorcontrib>Dang, T H</creatorcontrib><creatorcontrib>Rongione, Enzo</creatorcontrib><creatorcontrib>Boust, James</creatorcontrib><creatorcontrib>Collin, Sophie</creatorcontrib><creatorcontrib>George, Jean-Marie</creatorcontrib><creatorcontrib>Henri-Jean Drouhin</creatorcontrib><creatorcontrib>Laplace, Yannis</creatorcontrib><creatorcontrib>Grasset, Romain</creatorcontrib><creatorcontrib>Dong, Jingwei</creatorcontrib><creatorcontrib>Mangeney, Juliette</creatorcontrib><creatorcontrib>Tignon, Jerome</creatorcontrib><creatorcontrib>Jaffrès, Henri</creatorcontrib><creatorcontrib>Perfetti, Luca</creatorcontrib><creatorcontrib>Dhillon, Sukhdeep</creatorcontrib><title>Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy</title><title>arXiv.org</title><description>Terahertz (THz) spin-to-charge conversion has become an increasingly important process for THz pulse generation and as a tool to probe ultrafast spin interactions at magnetic interfaces. However, its relation to traditional, steady state, ferromagnetic resonance techniques is poorly understood. Here we investigate nanometric trilayers of Co/X/Pt (X=Ti, Au or Au0:85W0:15) as a function of the 'X' layer thickness, where THz emission generated by the inverse spin Hall effect is compared to the Gilbert damping of the ferromagnetic resonance. Through the insertion of the 'X' layer we show that the ultrafast spin current injected in the non-magnetic layer defines a direct spin conductance, whereas the Gilbert damping leads to an effective spin mixing-conductance of the trilayer. Importantly, we show that these two parameters are connected to each other and that spin-memory losses can be modeled via an effective Hamiltonian with Rashba fields. This work highlights that magneto-circuits concepts can be successfully extended to ultrafast spintronic devices, as well as enhancing the understanding of spin-to-charge conversion processes through the complementarity between ultrafast THz spectroscopy and steady state techniques.</description><subject>Conversion</subject><subject>Damping</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Gold</subject><subject>Hall effect</subject><subject>Platinum</subject><subject>Resistance</subject><subject>Spectrum analysis</subject><subject>Spintronics</subject><subject>Steady state</subject><subject>Thickness</subject><subject>Titanium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEKwjAURIMgWLR3-OC6kCZG3YvSvd2XGn8gpU1ifrqopzeCB3A1i3lvmBUrhJR1dT4IsWEl0cA5F8eTUEoWrL0H68C6AXWy3gEaY7VFpxfoE0yY-nG0OgMJo-k1EoToH_iExwJt8wacLNFXpJAXoiftw7Jja9OPhOUvt2x_u7aXpsrua0ZK3eDn6HLVCcWFqmU-JP-jPso8QQU</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Hawecker, Jacques</creator><creator>Dang, T H</creator><creator>Rongione, Enzo</creator><creator>Boust, James</creator><creator>Collin, Sophie</creator><creator>George, Jean-Marie</creator><creator>Henri-Jean Drouhin</creator><creator>Laplace, Yannis</creator><creator>Grasset, Romain</creator><creator>Dong, Jingwei</creator><creator>Mangeney, Juliette</creator><creator>Tignon, Jerome</creator><creator>Jaffrès, Henri</creator><creator>Perfetti, Luca</creator><creator>Dhillon, Sukhdeep</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210317</creationdate><title>Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy</title><author>Hawecker, Jacques ; Dang, T H ; Rongione, Enzo ; Boust, James ; Collin, Sophie ; George, Jean-Marie ; Henri-Jean Drouhin ; Laplace, Yannis ; Grasset, Romain ; Dong, Jingwei ; Mangeney, Juliette ; Tignon, Jerome ; Jaffrès, Henri ; Perfetti, Luca ; Dhillon, Sukhdeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25025130263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conversion</topic><topic>Damping</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Gold</topic><topic>Hall effect</topic><topic>Platinum</topic><topic>Resistance</topic><topic>Spectrum analysis</topic><topic>Spintronics</topic><topic>Steady state</topic><topic>Thickness</topic><topic>Titanium</topic><toplevel>online_resources</toplevel><creatorcontrib>Hawecker, Jacques</creatorcontrib><creatorcontrib>Dang, T H</creatorcontrib><creatorcontrib>Rongione, Enzo</creatorcontrib><creatorcontrib>Boust, James</creatorcontrib><creatorcontrib>Collin, Sophie</creatorcontrib><creatorcontrib>George, Jean-Marie</creatorcontrib><creatorcontrib>Henri-Jean Drouhin</creatorcontrib><creatorcontrib>Laplace, Yannis</creatorcontrib><creatorcontrib>Grasset, Romain</creatorcontrib><creatorcontrib>Dong, Jingwei</creatorcontrib><creatorcontrib>Mangeney, Juliette</creatorcontrib><creatorcontrib>Tignon, Jerome</creatorcontrib><creatorcontrib>Jaffrès, Henri</creatorcontrib><creatorcontrib>Perfetti, Luca</creatorcontrib><creatorcontrib>Dhillon, Sukhdeep</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawecker, Jacques</au><au>Dang, T H</au><au>Rongione, Enzo</au><au>Boust, James</au><au>Collin, Sophie</au><au>George, Jean-Marie</au><au>Henri-Jean Drouhin</au><au>Laplace, Yannis</au><au>Grasset, Romain</au><au>Dong, Jingwei</au><au>Mangeney, Juliette</au><au>Tignon, Jerome</au><au>Jaffrès, Henri</au><au>Perfetti, Luca</au><au>Dhillon, Sukhdeep</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy</atitle><jtitle>arXiv.org</jtitle><date>2021-03-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Terahertz (THz) spin-to-charge conversion has become an increasingly important process for THz pulse generation and as a tool to probe ultrafast spin interactions at magnetic interfaces. However, its relation to traditional, steady state, ferromagnetic resonance techniques is poorly understood. Here we investigate nanometric trilayers of Co/X/Pt (X=Ti, Au or Au0:85W0:15) as a function of the 'X' layer thickness, where THz emission generated by the inverse spin Hall effect is compared to the Gilbert damping of the ferromagnetic resonance. Through the insertion of the 'X' layer we show that the ultrafast spin current injected in the non-magnetic layer defines a direct spin conductance, whereas the Gilbert damping leads to an effective spin mixing-conductance of the trilayer. Importantly, we show that these two parameters are connected to each other and that spin-memory losses can be modeled via an effective Hamiltonian with Rashba fields. This work highlights that magneto-circuits concepts can be successfully extended to ultrafast spintronic devices, as well as enhancing the understanding of spin-to-charge conversion processes through the complementarity between ultrafast THz spectroscopy and steady state techniques.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2502513026
source Free E- Journals
subjects Conversion
Damping
Ferromagnetic resonance
Ferromagnetism
Gold
Hall effect
Platinum
Resistance
Spectrum analysis
Spintronics
Steady state
Thickness
Titanium
title Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spin%20injection%20efficiency%20at%20metallic%20interfaces%20probed%20by%20THz%20emission%20spectroscopy&rft.jtitle=arXiv.org&rft.au=Hawecker,%20Jacques&rft.date=2021-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2502513026%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502513026&rft_id=info:pmid/&rfr_iscdi=true