Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing
Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibil...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2021-03, Vol.306 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Macromolecular materials and engineering |
container_volume | 306 |
creator | Pan, Yaoyu Song, Qiongfang Zhu, Yalin Wang, Yun Sun, Zhengguang Chen, Xueqin Xu, Ziqiang Li, Cao Jiang, Bingbing |
description | Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization.
Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement. |
doi_str_mv | 10.1002/mame.202000643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2502232326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502232326</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2703-1782f020850b18547acf416ebe5a4966c05aa135a38975f36184b5d42b9c34ea3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVsyXOKetXHscSNYDUqhzK2XJSp7hy4uA0oNz4BL6RLyGhqFppd0c7mt0dhG4JzAgAva9UpWcUKACEnJ2hCeEsCSgIfv7Xx0HEE3qJrtp2D0CiOGETVGUq96ZQB-Nq7Eq8MoV3jfOua_GLs32lhynOjK3wh1E4ddY6s_35-n5Qrd7ipeq1H1E_JDsCvNHFW-2s2_W4dB6na4pT1Rw6b-rdNboolW31zX-dotdssUmfguX68TmdL4MdjYAFw220HB6JBeQkFjxSRclJqHMtFE_CsAChFGFCsTiJRMlCEvNcbDnNk4JxrdgU3R11G-_eO90e5N51vh5WSiqAUjZEOLCSI-vTWN3LxptK-V4SkKOfcvRTnvyUq_lqcULsF5WFbh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502232326</pqid></control><display><type>article</type><title>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pan, Yaoyu ; Song, Qiongfang ; Zhu, Yalin ; Wang, Yun ; Sun, Zhengguang ; Chen, Xueqin ; Xu, Ziqiang ; Li, Cao ; Jiang, Bingbing</creator><creatorcontrib>Pan, Yaoyu ; Song, Qiongfang ; Zhu, Yalin ; Wang, Yun ; Sun, Zhengguang ; Chen, Xueqin ; Xu, Ziqiang ; Li, Cao ; Jiang, Bingbing</creatorcontrib><description>Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization.
Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.202000643</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Ammonium chloride ; Assembly ; Buffer layers ; Carbon dioxide ; Carbon sequestration ; CO 2 capture ; Crosslinking ; hypercrosslinked polymers ; Industrial applications ; large‐scale and simple preparation strategies ; layer‐by‐layer self‐assembly ; Mechanical properties ; microporous polymeric films ; Microspheres ; Nanomaterials ; Nanoparticles ; Polyethyleneimine ; Polymer films ; Polystyrene resins</subject><ispartof>Macromolecular materials and engineering, 2021-03, Vol.306 (3), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6513-2643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.202000643$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.202000643$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Pan, Yaoyu</creatorcontrib><creatorcontrib>Song, Qiongfang</creatorcontrib><creatorcontrib>Zhu, Yalin</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Sun, Zhengguang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xu, Ziqiang</creatorcontrib><creatorcontrib>Li, Cao</creatorcontrib><creatorcontrib>Jiang, Bingbing</creatorcontrib><title>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</title><title>Macromolecular materials and engineering</title><description>Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization.
Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement.</description><subject>Ammonium chloride</subject><subject>Assembly</subject><subject>Buffer layers</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO 2 capture</subject><subject>Crosslinking</subject><subject>hypercrosslinked polymers</subject><subject>Industrial applications</subject><subject>large‐scale and simple preparation strategies</subject><subject>layer‐by‐layer self‐assembly</subject><subject>Mechanical properties</subject><subject>microporous polymeric films</subject><subject>Microspheres</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Polyethyleneimine</subject><subject>Polymer films</subject><subject>Polystyrene resins</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKVsyXOKetXHscSNYDUqhzK2XJSp7hy4uA0oNz4BL6RLyGhqFppd0c7mt0dhG4JzAgAva9UpWcUKACEnJ2hCeEsCSgIfv7Xx0HEE3qJrtp2D0CiOGETVGUq96ZQB-Nq7Eq8MoV3jfOua_GLs32lhynOjK3wh1E4ddY6s_35-n5Qrd7ipeq1H1E_JDsCvNHFW-2s2_W4dB6na4pT1Rw6b-rdNboolW31zX-dotdssUmfguX68TmdL4MdjYAFw220HB6JBeQkFjxSRclJqHMtFE_CsAChFGFCsTiJRMlCEvNcbDnNk4JxrdgU3R11G-_eO90e5N51vh5WSiqAUjZEOLCSI-vTWN3LxptK-V4SkKOfcvRTnvyUq_lqcULsF5WFbh8</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Pan, Yaoyu</creator><creator>Song, Qiongfang</creator><creator>Zhu, Yalin</creator><creator>Wang, Yun</creator><creator>Sun, Zhengguang</creator><creator>Chen, Xueqin</creator><creator>Xu, Ziqiang</creator><creator>Li, Cao</creator><creator>Jiang, Bingbing</creator><general>John Wiley & Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6513-2643</orcidid></search><sort><creationdate>202103</creationdate><title>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</title><author>Pan, Yaoyu ; Song, Qiongfang ; Zhu, Yalin ; Wang, Yun ; Sun, Zhengguang ; Chen, Xueqin ; Xu, Ziqiang ; Li, Cao ; Jiang, Bingbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2703-1782f020850b18547acf416ebe5a4966c05aa135a38975f36184b5d42b9c34ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonium chloride</topic><topic>Assembly</topic><topic>Buffer layers</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO 2 capture</topic><topic>Crosslinking</topic><topic>hypercrosslinked polymers</topic><topic>Industrial applications</topic><topic>large‐scale and simple preparation strategies</topic><topic>layer‐by‐layer self‐assembly</topic><topic>Mechanical properties</topic><topic>microporous polymeric films</topic><topic>Microspheres</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Polyethyleneimine</topic><topic>Polymer films</topic><topic>Polystyrene resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yaoyu</creatorcontrib><creatorcontrib>Song, Qiongfang</creatorcontrib><creatorcontrib>Zhu, Yalin</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Sun, Zhengguang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xu, Ziqiang</creatorcontrib><creatorcontrib>Li, Cao</creatorcontrib><creatorcontrib>Jiang, Bingbing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yaoyu</au><au>Song, Qiongfang</au><au>Zhu, Yalin</au><au>Wang, Yun</au><au>Sun, Zhengguang</au><au>Chen, Xueqin</au><au>Xu, Ziqiang</au><au>Li, Cao</au><au>Jiang, Bingbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2021-03</date><risdate>2021</risdate><volume>306</volume><issue>3</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization.
Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mame.202000643</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6513-2643</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-7492 |
ispartof | Macromolecular materials and engineering, 2021-03, Vol.306 (3), p.n/a |
issn | 1438-7492 1439-2054 |
language | eng |
recordid | cdi_proquest_journals_2502232326 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonium chloride Assembly Buffer layers Carbon dioxide Carbon sequestration CO 2 capture Crosslinking hypercrosslinked polymers Industrial applications large‐scale and simple preparation strategies layer‐by‐layer self‐assembly Mechanical properties microporous polymeric films Microspheres Nanomaterials Nanoparticles Polyethyleneimine Polymer films Polystyrene resins |
title | Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Microporous%20Polymeric%20Film%20via%20Colloid%E2%80%90Based%20Layer%E2%80%90By%E2%80%90layer%20Technology%20for%20CO2%20Capturing&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Pan,%20Yaoyu&rft.date=2021-03&rft.volume=306&rft.issue=3&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.202000643&rft_dat=%3Cproquest_wiley%3E2502232326%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502232326&rft_id=info:pmid/&rfr_iscdi=true |