Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing

Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2021-03, Vol.306 (3), p.n/a
Hauptverfasser: Pan, Yaoyu, Song, Qiongfang, Zhu, Yalin, Wang, Yun, Sun, Zhengguang, Chen, Xueqin, Xu, Ziqiang, Li, Cao, Jiang, Bingbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Macromolecular materials and engineering
container_volume 306
creator Pan, Yaoyu
Song, Qiongfang
Zhu, Yalin
Wang, Yun
Sun, Zhengguang
Chen, Xueqin
Xu, Ziqiang
Li, Cao
Jiang, Bingbing
description Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization. Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement.
doi_str_mv 10.1002/mame.202000643
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2502232326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502232326</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2703-1782f020850b18547acf416ebe5a4966c05aa135a38975f36184b5d42b9c34ea3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVsyXOKetXHscSNYDUqhzK2XJSp7hy4uA0oNz4BL6RLyGhqFppd0c7mt0dhG4JzAgAva9UpWcUKACEnJ2hCeEsCSgIfv7Xx0HEE3qJrtp2D0CiOGETVGUq96ZQB-Nq7Eq8MoV3jfOua_GLs32lhynOjK3wh1E4ddY6s_35-n5Qrd7ipeq1H1E_JDsCvNHFW-2s2_W4dB6na4pT1Rw6b-rdNboolW31zX-dotdssUmfguX68TmdL4MdjYAFw220HB6JBeQkFjxSRclJqHMtFE_CsAChFGFCsTiJRMlCEvNcbDnNk4JxrdgU3R11G-_eO90e5N51vh5WSiqAUjZEOLCSI-vTWN3LxptK-V4SkKOfcvRTnvyUq_lqcULsF5WFbh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502232326</pqid></control><display><type>article</type><title>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pan, Yaoyu ; Song, Qiongfang ; Zhu, Yalin ; Wang, Yun ; Sun, Zhengguang ; Chen, Xueqin ; Xu, Ziqiang ; Li, Cao ; Jiang, Bingbing</creator><creatorcontrib>Pan, Yaoyu ; Song, Qiongfang ; Zhu, Yalin ; Wang, Yun ; Sun, Zhengguang ; Chen, Xueqin ; Xu, Ziqiang ; Li, Cao ; Jiang, Bingbing</creatorcontrib><description>Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization. Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.202000643</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Ammonium chloride ; Assembly ; Buffer layers ; Carbon dioxide ; Carbon sequestration ; CO 2 capture ; Crosslinking ; hypercrosslinked polymers ; Industrial applications ; large‐scale and simple preparation strategies ; layer‐by‐layer self‐assembly ; Mechanical properties ; microporous polymeric films ; Microspheres ; Nanomaterials ; Nanoparticles ; Polyethyleneimine ; Polymer films ; Polystyrene resins</subject><ispartof>Macromolecular materials and engineering, 2021-03, Vol.306 (3), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6513-2643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.202000643$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.202000643$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Pan, Yaoyu</creatorcontrib><creatorcontrib>Song, Qiongfang</creatorcontrib><creatorcontrib>Zhu, Yalin</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Sun, Zhengguang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xu, Ziqiang</creatorcontrib><creatorcontrib>Li, Cao</creatorcontrib><creatorcontrib>Jiang, Bingbing</creatorcontrib><title>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</title><title>Macromolecular materials and engineering</title><description>Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization. Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement.</description><subject>Ammonium chloride</subject><subject>Assembly</subject><subject>Buffer layers</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO 2 capture</subject><subject>Crosslinking</subject><subject>hypercrosslinked polymers</subject><subject>Industrial applications</subject><subject>large‐scale and simple preparation strategies</subject><subject>layer‐by‐layer self‐assembly</subject><subject>Mechanical properties</subject><subject>microporous polymeric films</subject><subject>Microspheres</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Polyethyleneimine</subject><subject>Polymer films</subject><subject>Polystyrene resins</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKVsyXOKetXHscSNYDUqhzK2XJSp7hy4uA0oNz4BL6RLyGhqFppd0c7mt0dhG4JzAgAva9UpWcUKACEnJ2hCeEsCSgIfv7Xx0HEE3qJrtp2D0CiOGETVGUq96ZQB-Nq7Eq8MoV3jfOua_GLs32lhynOjK3wh1E4ddY6s_35-n5Qrd7ipeq1H1E_JDsCvNHFW-2s2_W4dB6na4pT1Rw6b-rdNboolW31zX-dotdssUmfguX68TmdL4MdjYAFw220HB6JBeQkFjxSRclJqHMtFE_CsAChFGFCsTiJRMlCEvNcbDnNk4JxrdgU3R11G-_eO90e5N51vh5WSiqAUjZEOLCSI-vTWN3LxptK-V4SkKOfcvRTnvyUq_lqcULsF5WFbh8</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Pan, Yaoyu</creator><creator>Song, Qiongfang</creator><creator>Zhu, Yalin</creator><creator>Wang, Yun</creator><creator>Sun, Zhengguang</creator><creator>Chen, Xueqin</creator><creator>Xu, Ziqiang</creator><creator>Li, Cao</creator><creator>Jiang, Bingbing</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6513-2643</orcidid></search><sort><creationdate>202103</creationdate><title>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</title><author>Pan, Yaoyu ; Song, Qiongfang ; Zhu, Yalin ; Wang, Yun ; Sun, Zhengguang ; Chen, Xueqin ; Xu, Ziqiang ; Li, Cao ; Jiang, Bingbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2703-1782f020850b18547acf416ebe5a4966c05aa135a38975f36184b5d42b9c34ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonium chloride</topic><topic>Assembly</topic><topic>Buffer layers</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO 2 capture</topic><topic>Crosslinking</topic><topic>hypercrosslinked polymers</topic><topic>Industrial applications</topic><topic>large‐scale and simple preparation strategies</topic><topic>layer‐by‐layer self‐assembly</topic><topic>Mechanical properties</topic><topic>microporous polymeric films</topic><topic>Microspheres</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Polyethyleneimine</topic><topic>Polymer films</topic><topic>Polystyrene resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yaoyu</creatorcontrib><creatorcontrib>Song, Qiongfang</creatorcontrib><creatorcontrib>Zhu, Yalin</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Sun, Zhengguang</creatorcontrib><creatorcontrib>Chen, Xueqin</creatorcontrib><creatorcontrib>Xu, Ziqiang</creatorcontrib><creatorcontrib>Li, Cao</creatorcontrib><creatorcontrib>Jiang, Bingbing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yaoyu</au><au>Song, Qiongfang</au><au>Zhu, Yalin</au><au>Wang, Yun</au><au>Sun, Zhengguang</au><au>Chen, Xueqin</au><au>Xu, Ziqiang</au><au>Li, Cao</au><au>Jiang, Bingbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2021-03</date><risdate>2021</risdate><volume>306</volume><issue>3</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Large‐scale and simple strategies to flexibly preparing materials with industrial application potential attract people's attention. Layer‐by‐layer (LBL) self‐assembly technology is a typical preparation method for current nanomaterials to address the large‐scale concern and achieve the possibility of a simple, streamlined and controllable process. Here, a novel and simple strategy is developed to fabricate microporous polymeric film (MPF) based on poly(styrene‐hydroxyethyl methylacrylate) (P(St‐HEMA)) microspheres, in combination with LBL self‐assembly technology and hypercrosslinked microporous post‐treatment. To improve the mechanical properties of the film, the buffer layer of polyethyleneimine (PEI) and poly(sodium‐p‐styrenesulfonate) (PSS) are used to avoid swelling of nanoparticles and the methacryloxyethyltrimethyl ammonium chloride (DMC) is chosen to increase the force between the nanoparticles via UV‐crosslinking. The MPF has well CO2 capture capabilities up to 46.21 wt% (10.52 mmol g−1), large‐scale feature and certain improved mechanical properties. It is hoped that the research could display a successful strategy to prepare the large‐scale film for the application of industrialization. Porous organic polymers or hypercrosslinked polymers are urgently required to achieve simple, controllable, and streamlined preparation for application of industrialization. The microporous polymeric film synthesized via layer‐by‐layer technology features large‐scale and could be programmed manufactured. The materials have high specific surface area (338.33 m2 g−1) and well CO2 capacity of 41.24 wt% (10.52 mmol g−1). Through adding buffer layers and UV‐crosslinking by methacryloxyethyltrimethyl ammonium chloride, the mechanical properties of films have a certain improvement.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mame.202000643</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6513-2643</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2021-03, Vol.306 (3), p.n/a
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_journals_2502232326
source Wiley Online Library Journals Frontfile Complete
subjects Ammonium chloride
Assembly
Buffer layers
Carbon dioxide
Carbon sequestration
CO 2 capture
Crosslinking
hypercrosslinked polymers
Industrial applications
large‐scale and simple preparation strategies
layer‐by‐layer self‐assembly
Mechanical properties
microporous polymeric films
Microspheres
Nanomaterials
Nanoparticles
Polyethyleneimine
Polymer films
Polystyrene resins
title Fabrication of Microporous Polymeric Film via Colloid‐Based Layer‐By‐layer Technology for CO2 Capturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Microporous%20Polymeric%20Film%20via%20Colloid%E2%80%90Based%20Layer%E2%80%90By%E2%80%90layer%20Technology%20for%20CO2%20Capturing&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Pan,%20Yaoyu&rft.date=2021-03&rft.volume=306&rft.issue=3&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.202000643&rft_dat=%3Cproquest_wiley%3E2502232326%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502232326&rft_id=info:pmid/&rfr_iscdi=true