Thermal analysis of solvatomorphic decakis (dimethylammonium) dihydrogendodecatungstate hydrates
This study aims to describe the thermal decomposition of two solvatomorphs of decakis(dimethylammonium) dihydrogendodecatungstate ((Me 2 NH 2 ) 10 H 2 W 12 O 42 ·10H 2 O and 11 H 2 O) under inert and oxidizing atmospheres. Thermal studies have been done by TG-MS, TG-DSC-MS, XRD and IR methods in bot...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2021-04, Vol.144 (1), p.81-90 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 144 |
creator | Trif, László Franguelli, Fernanda P. Lendvay, György Majzik, Eszter Béres, Kende Bereczki, Laura Szilágyi, Imre M. Pawar, Rajandra P. Kótai, László |
description | This study aims to describe the thermal decomposition of two solvatomorphs of decakis(dimethylammonium) dihydrogendodecatungstate ((Me
2
NH
2
)
10
H
2
W
12
O
42
·10H
2
O and 11 H
2
O) under inert and oxidizing atmospheres. Thermal studies have been done by TG-MS, TG-DSC-MS, XRD and IR methods in both synthetic air and helium atmospheres. The general characteristics of thermal decomposition are similar for both solvatomorphs. Minor differences could be observed in the resolution and shifting of the decomposition peak temperatures depending on the heating rate or atmosphere used. The first step of decomposition is endothermic in both atmospheres and involves 2 and 5 water molecule elimination with ~ 150 and ~ 120 °C peak temperatures for the decahydrate and undecahydrate, respectively. The elimination of further water and dimethylamine was observed with increasing the temperature, as well as the disruption of the lattice of compounds. Until 300 °C, these processes are endothermic in both atmospheres, and the further decomposition processes at higher temperatures are left endothermic in helium, but become exothermic in synthetic air atmosphere. In helium atmosphere, above 350 °C, a solid-phase quasi-intramolecular redox reaction takes place when the dimethylamine degradation products react with the W=O bonds with formation of oxidative coupling products of the organic fragments and reduced tungsten oxide with WO
~2.93
composition. In synthetic air, above 350 °C, burning of organic fragments takes place, there are no oxidative coupling products and reduced tungsten oxide formation, and the end product of decomposition is monoclinic WO
3
. |
doi_str_mv | 10.1007/s10973-020-10494-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2502220982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656117180</galeid><sourcerecordid>A656117180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-21038e5d6e1b1b4f218fb6640ef3a91012c05988d3a51f4bca2a028473a4cd383</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEuPjD3CqxAUOBTtJu-Q4Ib4kJC7jHLJ8bBltM5IOaf-ejCJxQz7Yst_Hst-iuEC4QYDpbUIQU1oBgQqBCVaxg2KCNecVEaQ5zDXNdYM1HBcnKa0BQAjASfE-X9nYqbZUvWp3yacyuDKF9ksNoQtxs_K6NFarjzy5Mr6zw2rXqq4Lvd9216Xxq52JYWl7E_ayYdsv06AGW-77Oaez4sipNtnz33xavD3cz--eqpfXx-e72UulGRVDRRAot7VpLC5wwRxB7hZNw8A6qgQCEg214NxQVaNjC62IAsLZlCqmDeX0tLgc925i-NzaNMh12Mb8VJKkBkIICE6y6mZULVVrpe9dGKLSOYztvA69dT73Z03dIE6RQwbICOgYUorWyU30nYo7iSD31svRepmtlz_WS5YhOkIpi_uljX-3_EN9A3NKh-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502220982</pqid></control><display><type>article</type><title>Thermal analysis of solvatomorphic decakis (dimethylammonium) dihydrogendodecatungstate hydrates</title><source>Springer Nature - Complete Springer Journals</source><creator>Trif, László ; Franguelli, Fernanda P. ; Lendvay, György ; Majzik, Eszter ; Béres, Kende ; Bereczki, Laura ; Szilágyi, Imre M. ; Pawar, Rajandra P. ; Kótai, László</creator><creatorcontrib>Trif, László ; Franguelli, Fernanda P. ; Lendvay, György ; Majzik, Eszter ; Béres, Kende ; Bereczki, Laura ; Szilágyi, Imre M. ; Pawar, Rajandra P. ; Kótai, László</creatorcontrib><description>This study aims to describe the thermal decomposition of two solvatomorphs of decakis(dimethylammonium) dihydrogendodecatungstate ((Me
2
NH
2
)
10
H
2
W
12
O
42
·10H
2
O and 11 H
2
O) under inert and oxidizing atmospheres. Thermal studies have been done by TG-MS, TG-DSC-MS, XRD and IR methods in both synthetic air and helium atmospheres. The general characteristics of thermal decomposition are similar for both solvatomorphs. Minor differences could be observed in the resolution and shifting of the decomposition peak temperatures depending on the heating rate or atmosphere used. The first step of decomposition is endothermic in both atmospheres and involves 2 and 5 water molecule elimination with ~ 150 and ~ 120 °C peak temperatures for the decahydrate and undecahydrate, respectively. The elimination of further water and dimethylamine was observed with increasing the temperature, as well as the disruption of the lattice of compounds. Until 300 °C, these processes are endothermic in both atmospheres, and the further decomposition processes at higher temperatures are left endothermic in helium, but become exothermic in synthetic air atmosphere. In helium atmosphere, above 350 °C, a solid-phase quasi-intramolecular redox reaction takes place when the dimethylamine degradation products react with the W=O bonds with formation of oxidative coupling products of the organic fragments and reduced tungsten oxide with WO
~2.93
composition. In synthetic air, above 350 °C, burning of organic fragments takes place, there are no oxidative coupling products and reduced tungsten oxide formation, and the end product of decomposition is monoclinic WO
3
.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-10494-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Atmospheres ; Chemistry ; Chemistry and Materials Science ; Coupling ; Decomposition ; Endothermic reactions ; Exothermic reactions ; Fragments ; Heating rate ; Helium ; Hydrates ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Oxidation ; Oxidizing atmospheres ; Physical Chemistry ; Polymer Sciences ; Redox reactions ; Solid phases ; Thermal analysis ; Thermal decomposition ; Tungsten compounds ; Tungsten oxides ; Water chemistry</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-04, Vol.144 (1), p.81-90</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-21038e5d6e1b1b4f218fb6640ef3a91012c05988d3a51f4bca2a028473a4cd383</citedby><cites>FETCH-LOGICAL-c439t-21038e5d6e1b1b4f218fb6640ef3a91012c05988d3a51f4bca2a028473a4cd383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-10494-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-10494-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Trif, László</creatorcontrib><creatorcontrib>Franguelli, Fernanda P.</creatorcontrib><creatorcontrib>Lendvay, György</creatorcontrib><creatorcontrib>Majzik, Eszter</creatorcontrib><creatorcontrib>Béres, Kende</creatorcontrib><creatorcontrib>Bereczki, Laura</creatorcontrib><creatorcontrib>Szilágyi, Imre M.</creatorcontrib><creatorcontrib>Pawar, Rajandra P.</creatorcontrib><creatorcontrib>Kótai, László</creatorcontrib><title>Thermal analysis of solvatomorphic decakis (dimethylammonium) dihydrogendodecatungstate hydrates</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This study aims to describe the thermal decomposition of two solvatomorphs of decakis(dimethylammonium) dihydrogendodecatungstate ((Me
2
NH
2
)
10
H
2
W
12
O
42
·10H
2
O and 11 H
2
O) under inert and oxidizing atmospheres. Thermal studies have been done by TG-MS, TG-DSC-MS, XRD and IR methods in both synthetic air and helium atmospheres. The general characteristics of thermal decomposition are similar for both solvatomorphs. Minor differences could be observed in the resolution and shifting of the decomposition peak temperatures depending on the heating rate or atmosphere used. The first step of decomposition is endothermic in both atmospheres and involves 2 and 5 water molecule elimination with ~ 150 and ~ 120 °C peak temperatures for the decahydrate and undecahydrate, respectively. The elimination of further water and dimethylamine was observed with increasing the temperature, as well as the disruption of the lattice of compounds. Until 300 °C, these processes are endothermic in both atmospheres, and the further decomposition processes at higher temperatures are left endothermic in helium, but become exothermic in synthetic air atmosphere. In helium atmosphere, above 350 °C, a solid-phase quasi-intramolecular redox reaction takes place when the dimethylamine degradation products react with the W=O bonds with formation of oxidative coupling products of the organic fragments and reduced tungsten oxide with WO
~2.93
composition. In synthetic air, above 350 °C, burning of organic fragments takes place, there are no oxidative coupling products and reduced tungsten oxide formation, and the end product of decomposition is monoclinic WO
3
.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Atmospheres</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Decomposition</subject><subject>Endothermic reactions</subject><subject>Exothermic reactions</subject><subject>Fragments</subject><subject>Heating rate</subject><subject>Helium</subject><subject>Hydrates</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Oxidation</subject><subject>Oxidizing atmospheres</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Redox reactions</subject><subject>Solid phases</subject><subject>Thermal analysis</subject><subject>Thermal decomposition</subject><subject>Tungsten compounds</subject><subject>Tungsten oxides</subject><subject>Water chemistry</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1PwzAMhisEEuPjD3CqxAUOBTtJu-Q4Ib4kJC7jHLJ8bBltM5IOaf-ejCJxQz7Yst_Hst-iuEC4QYDpbUIQU1oBgQqBCVaxg2KCNecVEaQ5zDXNdYM1HBcnKa0BQAjASfE-X9nYqbZUvWp3yacyuDKF9ksNoQtxs_K6NFarjzy5Mr6zw2rXqq4Lvd9216Xxq52JYWl7E_ayYdsv06AGW-77Oaez4sipNtnz33xavD3cz--eqpfXx-e72UulGRVDRRAot7VpLC5wwRxB7hZNw8A6qgQCEg214NxQVaNjC62IAsLZlCqmDeX0tLgc925i-NzaNMh12Mb8VJKkBkIICE6y6mZULVVrpe9dGKLSOYztvA69dT73Z03dIE6RQwbICOgYUorWyU30nYo7iSD31svRepmtlz_WS5YhOkIpi_uljX-3_EN9A3NKh-Y</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Trif, László</creator><creator>Franguelli, Fernanda P.</creator><creator>Lendvay, György</creator><creator>Majzik, Eszter</creator><creator>Béres, Kende</creator><creator>Bereczki, Laura</creator><creator>Szilágyi, Imre M.</creator><creator>Pawar, Rajandra P.</creator><creator>Kótai, László</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Thermal analysis of solvatomorphic decakis (dimethylammonium) dihydrogendodecatungstate hydrates</title><author>Trif, László ; Franguelli, Fernanda P. ; Lendvay, György ; Majzik, Eszter ; Béres, Kende ; Bereczki, Laura ; Szilágyi, Imre M. ; Pawar, Rajandra P. ; Kótai, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-21038e5d6e1b1b4f218fb6640ef3a91012c05988d3a51f4bca2a028473a4cd383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Atmospheres</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Decomposition</topic><topic>Endothermic reactions</topic><topic>Exothermic reactions</topic><topic>Fragments</topic><topic>Heating rate</topic><topic>Helium</topic><topic>Hydrates</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Oxidation</topic><topic>Oxidizing atmospheres</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Redox reactions</topic><topic>Solid phases</topic><topic>Thermal analysis</topic><topic>Thermal decomposition</topic><topic>Tungsten compounds</topic><topic>Tungsten oxides</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trif, László</creatorcontrib><creatorcontrib>Franguelli, Fernanda P.</creatorcontrib><creatorcontrib>Lendvay, György</creatorcontrib><creatorcontrib>Majzik, Eszter</creatorcontrib><creatorcontrib>Béres, Kende</creatorcontrib><creatorcontrib>Bereczki, Laura</creatorcontrib><creatorcontrib>Szilágyi, Imre M.</creatorcontrib><creatorcontrib>Pawar, Rajandra P.</creatorcontrib><creatorcontrib>Kótai, László</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trif, László</au><au>Franguelli, Fernanda P.</au><au>Lendvay, György</au><au>Majzik, Eszter</au><au>Béres, Kende</au><au>Bereczki, Laura</au><au>Szilágyi, Imre M.</au><au>Pawar, Rajandra P.</au><au>Kótai, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal analysis of solvatomorphic decakis (dimethylammonium) dihydrogendodecatungstate hydrates</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>144</volume><issue>1</issue><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This study aims to describe the thermal decomposition of two solvatomorphs of decakis(dimethylammonium) dihydrogendodecatungstate ((Me
2
NH
2
)
10
H
2
W
12
O
42
·10H
2
O and 11 H
2
O) under inert and oxidizing atmospheres. Thermal studies have been done by TG-MS, TG-DSC-MS, XRD and IR methods in both synthetic air and helium atmospheres. The general characteristics of thermal decomposition are similar for both solvatomorphs. Minor differences could be observed in the resolution and shifting of the decomposition peak temperatures depending on the heating rate or atmosphere used. The first step of decomposition is endothermic in both atmospheres and involves 2 and 5 water molecule elimination with ~ 150 and ~ 120 °C peak temperatures for the decahydrate and undecahydrate, respectively. The elimination of further water and dimethylamine was observed with increasing the temperature, as well as the disruption of the lattice of compounds. Until 300 °C, these processes are endothermic in both atmospheres, and the further decomposition processes at higher temperatures are left endothermic in helium, but become exothermic in synthetic air atmosphere. In helium atmosphere, above 350 °C, a solid-phase quasi-intramolecular redox reaction takes place when the dimethylamine degradation products react with the W=O bonds with formation of oxidative coupling products of the organic fragments and reduced tungsten oxide with WO
~2.93
composition. In synthetic air, above 350 °C, burning of organic fragments takes place, there are no oxidative coupling products and reduced tungsten oxide formation, and the end product of decomposition is monoclinic WO
3
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-10494-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2021-04, Vol.144 (1), p.81-90 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2502220982 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Analytical Chemistry Atmospheres Chemistry Chemistry and Materials Science Coupling Decomposition Endothermic reactions Exothermic reactions Fragments Heating rate Helium Hydrates Inorganic Chemistry Measurement Science and Instrumentation Oxidation Oxidizing atmospheres Physical Chemistry Polymer Sciences Redox reactions Solid phases Thermal analysis Thermal decomposition Tungsten compounds Tungsten oxides Water chemistry |
title | Thermal analysis of solvatomorphic decakis (dimethylammonium) dihydrogendodecatungstate hydrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20analysis%20of%20solvatomorphic%20decakis%20(dimethylammonium)%20dihydrogendodecatungstate%20hydrates&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Trif,%20L%C3%A1szl%C3%B3&rft.date=2021-04-01&rft.volume=144&rft.issue=1&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-10494-4&rft_dat=%3Cgale_proqu%3EA656117180%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502220982&rft_id=info:pmid/&rft_galeid=A656117180&rfr_iscdi=true |