Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm

Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2021-03, Vol.19 (1), p.2213-2223
Hauptverfasser: Hammers, Matthew D, Hodny, Michael H, Bader, Taysir K, Mahmoodi, M. Mohsen, Fang, Sifei, Fenton, Alexander D, Nurie, Kadiro, Trial, Hallie O, Xu, Feng, Healy, Andrew T, Ball, Zachary T, Blank, David A, Distefano, Mark D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2223
container_issue 1
container_start_page 2213
container_title Organic & biomolecular chemistry
container_volume 19
creator Hammers, Matthew D
Hodny, Michael H
Bader, Taysir K
Mahmoodi, M. Mohsen
Fang, Sifei
Fenton, Alexander D
Nurie, Kadiro
Trial, Hallie O
Xu, Feng
Healy, Andrew T
Ball, Zachary T
Blank, David A
Distefano, Mark D
description Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from λ max = 315 nm with the unfunctionalized NDBF scaffold to λ max = 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science. Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively.
doi_str_mv 10.1039/d0ob01986k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2502137888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502137888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</originalsourceid><addsrcrecordid>eNqNkstv1DAQxiNERUvhwh0UiQuiCowf8eOCBAsFRKUKqZwt23F2XbL2NnZ2xX9fL1vC48TJM5rf92lGn6vqCYJXCIh83UE0gKRg3-9VJ4hy3kBL5P25xnBcPUzpGgrEGX1QHRNCqBQYnVRfr3ax2axijqGegtVLH5Z17Gvjo7bZb12dVz4OqfahHvatdUPpdK53eusGF5Z5VVoTy0gA1GH9qDrq9ZDc47v3tPp2_uFq8am5uPz4efH2orFU0ty0xIrOMkaRtdbpvpeik5a4nndYS-BOYmaQ6EULiMjWGIE0Ni3GRLQ96ww5rd4cfDeTWbvOupBHPajN6Nd6_KGi9urvSfArtYxbJSjhCHgxeHFnMMabyaWs1j7tz9PBxSkpTDlGwASjBX3-D3odpzGU8xRuASPChRCFenmg7BhTGl0_L4NA7ZNS7-Hy3c-kvhT42Z_rz-ivaApwdgB2zsQ-We-CdTMGAIwAokBKhXChxf_TC5919jEs4hRykT49SMdkZ8XvP0VuATA5uOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502137888</pqid></control><display><type>article</type><title>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Hammers, Matthew D ; Hodny, Michael H ; Bader, Taysir K ; Mahmoodi, M. Mohsen ; Fang, Sifei ; Fenton, Alexander D ; Nurie, Kadiro ; Trial, Hallie O ; Xu, Feng ; Healy, Andrew T ; Ball, Zachary T ; Blank, David A ; Distefano, Mark D</creator><creatorcontrib>Hammers, Matthew D ; Hodny, Michael H ; Bader, Taysir K ; Mahmoodi, M. Mohsen ; Fang, Sifei ; Fenton, Alexander D ; Nurie, Kadiro ; Trial, Hallie O ; Xu, Feng ; Healy, Andrew T ; Ball, Zachary T ; Blank, David A ; Distefano, Mark D</creatorcontrib><description>Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from λ max = 315 nm with the unfunctionalized NDBF scaffold to λ max = 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science. Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively.</description><identifier>ISSN: 1477-0520</identifier><identifier>ISSN: 1477-0539</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/d0ob01986k</identifier><identifier>PMID: 33349821</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Absorption ; Animals ; Benzofurans - chemical synthesis ; Benzofurans - chemistry ; Benzofurans - radiation effects ; Biological activity ; Biology ; Chemistry ; Chemistry, Organic ; Crystallography ; Dogs ; Enzyme inhibitors ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Enzyme Inhibitors - radiation effects ; Farnesyltransferase ; Farnesyltranstransferase - antagonists &amp; inhibitors ; Glutathione ; Homeostasis ; Infrared Rays ; Irradiation ; Madin Darby Canine Kidney Cells ; Materials science ; NMR ; Nuclear magnetic resonance ; Orthogonality ; Photoactivation ; Photolysis ; Photolysis - radiation effects ; Photon absorption ; Photons ; Physical Sciences ; Protecting groups ; Protein structure ; Scaffolds ; Science &amp; Technology ; Sulfhydryl Compounds - chemistry ; Sulfhydryl Compounds - pharmacology ; Sulfhydryl Compounds - radiation effects ; Thiols ; Ultraviolet radiation ; Wavelength ; Wavelengths</subject><ispartof>Organic &amp; biomolecular chemistry, 2021-03, Vol.19 (1), p.2213-2223</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630140300012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</citedby><cites>FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</cites><orcidid>0000-0002-8681-0789 ; 0000-0002-2872-0259 ; 0000-0001-7892-3591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33349821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammers, Matthew D</creatorcontrib><creatorcontrib>Hodny, Michael H</creatorcontrib><creatorcontrib>Bader, Taysir K</creatorcontrib><creatorcontrib>Mahmoodi, M. Mohsen</creatorcontrib><creatorcontrib>Fang, Sifei</creatorcontrib><creatorcontrib>Fenton, Alexander D</creatorcontrib><creatorcontrib>Nurie, Kadiro</creatorcontrib><creatorcontrib>Trial, Hallie O</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Healy, Andrew T</creatorcontrib><creatorcontrib>Ball, Zachary T</creatorcontrib><creatorcontrib>Blank, David A</creatorcontrib><creatorcontrib>Distefano, Mark D</creatorcontrib><title>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</title><title>Organic &amp; biomolecular chemistry</title><addtitle>ORG BIOMOL CHEM</addtitle><addtitle>Org Biomol Chem</addtitle><description>Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from λ max = 315 nm with the unfunctionalized NDBF scaffold to λ max = 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science. Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively.</description><subject>Absorption</subject><subject>Animals</subject><subject>Benzofurans - chemical synthesis</subject><subject>Benzofurans - chemistry</subject><subject>Benzofurans - radiation effects</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Chemistry</subject><subject>Chemistry, Organic</subject><subject>Crystallography</subject><subject>Dogs</subject><subject>Enzyme inhibitors</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzyme Inhibitors - radiation effects</subject><subject>Farnesyltransferase</subject><subject>Farnesyltranstransferase - antagonists &amp; inhibitors</subject><subject>Glutathione</subject><subject>Homeostasis</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Materials science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Orthogonality</subject><subject>Photoactivation</subject><subject>Photolysis</subject><subject>Photolysis - radiation effects</subject><subject>Photon absorption</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Protecting groups</subject><subject>Protein structure</subject><subject>Scaffolds</subject><subject>Science &amp; Technology</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Sulfhydryl Compounds - radiation effects</subject><subject>Thiols</subject><subject>Ultraviolet radiation</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>1477-0520</issn><issn>1477-0539</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkstv1DAQxiNERUvhwh0UiQuiCowf8eOCBAsFRKUKqZwt23F2XbL2NnZ2xX9fL1vC48TJM5rf92lGn6vqCYJXCIh83UE0gKRg3-9VJ4hy3kBL5P25xnBcPUzpGgrEGX1QHRNCqBQYnVRfr3ax2axijqGegtVLH5Z17Gvjo7bZb12dVz4OqfahHvatdUPpdK53eusGF5Z5VVoTy0gA1GH9qDrq9ZDc47v3tPp2_uFq8am5uPz4efH2orFU0ty0xIrOMkaRtdbpvpeik5a4nndYS-BOYmaQ6EULiMjWGIE0Ni3GRLQ96ww5rd4cfDeTWbvOupBHPajN6Nd6_KGi9urvSfArtYxbJSjhCHgxeHFnMMabyaWs1j7tz9PBxSkpTDlGwASjBX3-D3odpzGU8xRuASPChRCFenmg7BhTGl0_L4NA7ZNS7-Hy3c-kvhT42Z_rz-ivaApwdgB2zsQ-We-CdTMGAIwAokBKhXChxf_TC5919jEs4hRykT49SMdkZ8XvP0VuATA5uOk</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Hammers, Matthew D</creator><creator>Hodny, Michael H</creator><creator>Bader, Taysir K</creator><creator>Mahmoodi, M. Mohsen</creator><creator>Fang, Sifei</creator><creator>Fenton, Alexander D</creator><creator>Nurie, Kadiro</creator><creator>Trial, Hallie O</creator><creator>Xu, Feng</creator><creator>Healy, Andrew T</creator><creator>Ball, Zachary T</creator><creator>Blank, David A</creator><creator>Distefano, Mark D</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>1KM</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8681-0789</orcidid><orcidid>https://orcid.org/0000-0002-2872-0259</orcidid><orcidid>https://orcid.org/0000-0001-7892-3591</orcidid></search><sort><creationdate>20210318</creationdate><title>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</title><author>Hammers, Matthew D ; Hodny, Michael H ; Bader, Taysir K ; Mahmoodi, M. Mohsen ; Fang, Sifei ; Fenton, Alexander D ; Nurie, Kadiro ; Trial, Hallie O ; Xu, Feng ; Healy, Andrew T ; Ball, Zachary T ; Blank, David A ; Distefano, Mark D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Benzofurans - chemical synthesis</topic><topic>Benzofurans - chemistry</topic><topic>Benzofurans - radiation effects</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Chemistry</topic><topic>Chemistry, Organic</topic><topic>Crystallography</topic><topic>Dogs</topic><topic>Enzyme inhibitors</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzyme Inhibitors - radiation effects</topic><topic>Farnesyltransferase</topic><topic>Farnesyltranstransferase - antagonists &amp; inhibitors</topic><topic>Glutathione</topic><topic>Homeostasis</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Materials science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Orthogonality</topic><topic>Photoactivation</topic><topic>Photolysis</topic><topic>Photolysis - radiation effects</topic><topic>Photon absorption</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Protecting groups</topic><topic>Protein structure</topic><topic>Scaffolds</topic><topic>Science &amp; Technology</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Sulfhydryl Compounds - radiation effects</topic><topic>Thiols</topic><topic>Ultraviolet radiation</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammers, Matthew D</creatorcontrib><creatorcontrib>Hodny, Michael H</creatorcontrib><creatorcontrib>Bader, Taysir K</creatorcontrib><creatorcontrib>Mahmoodi, M. Mohsen</creatorcontrib><creatorcontrib>Fang, Sifei</creatorcontrib><creatorcontrib>Fenton, Alexander D</creatorcontrib><creatorcontrib>Nurie, Kadiro</creatorcontrib><creatorcontrib>Trial, Hallie O</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Healy, Andrew T</creatorcontrib><creatorcontrib>Ball, Zachary T</creatorcontrib><creatorcontrib>Blank, David A</creatorcontrib><creatorcontrib>Distefano, Mark D</creatorcontrib><collection>Index Chemicus</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Organic &amp; biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammers, Matthew D</au><au>Hodny, Michael H</au><au>Bader, Taysir K</au><au>Mahmoodi, M. Mohsen</au><au>Fang, Sifei</au><au>Fenton, Alexander D</au><au>Nurie, Kadiro</au><au>Trial, Hallie O</au><au>Xu, Feng</au><au>Healy, Andrew T</au><au>Ball, Zachary T</au><au>Blank, David A</au><au>Distefano, Mark D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</atitle><jtitle>Organic &amp; biomolecular chemistry</jtitle><stitle>ORG BIOMOL CHEM</stitle><addtitle>Org Biomol Chem</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>2213</spage><epage>2223</epage><pages>2213-2223</pages><issn>1477-0520</issn><issn>1477-0539</issn><eissn>1477-0539</eissn><abstract>Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from λ max = 315 nm with the unfunctionalized NDBF scaffold to λ max = 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science. Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>33349821</pmid><doi>10.1039/d0ob01986k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8681-0789</orcidid><orcidid>https://orcid.org/0000-0002-2872-0259</orcidid><orcidid>https://orcid.org/0000-0001-7892-3591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-0520
ispartof Organic & biomolecular chemistry, 2021-03, Vol.19 (1), p.2213-2223
issn 1477-0520
1477-0539
1477-0539
language eng
recordid cdi_proquest_journals_2502137888
source MEDLINE; Royal Society Of Chemistry Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Absorption
Animals
Benzofurans - chemical synthesis
Benzofurans - chemistry
Benzofurans - radiation effects
Biological activity
Biology
Chemistry
Chemistry, Organic
Crystallography
Dogs
Enzyme inhibitors
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Enzyme Inhibitors - radiation effects
Farnesyltransferase
Farnesyltranstransferase - antagonists & inhibitors
Glutathione
Homeostasis
Infrared Rays
Irradiation
Madin Darby Canine Kidney Cells
Materials science
NMR
Nuclear magnetic resonance
Orthogonality
Photoactivation
Photolysis
Photolysis - radiation effects
Photon absorption
Photons
Physical Sciences
Protecting groups
Protein structure
Scaffolds
Science & Technology
Sulfhydryl Compounds - chemistry
Sulfhydryl Compounds - pharmacology
Sulfhydryl Compounds - radiation effects
Thiols
Ultraviolet radiation
Wavelength
Wavelengths
title Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-photon%20uncaging%20of%20bioactive%20thiols%20in%20live%20cells%20at%20wavelengths%20above%20800%20nm&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Hammers,%20Matthew%20D&rft.date=2021-03-18&rft.volume=19&rft.issue=1&rft.spage=2213&rft.epage=2223&rft.pages=2213-2223&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/d0ob01986k&rft_dat=%3Cproquest_pubme%3E2502137888%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502137888&rft_id=info:pmid/33349821&rfr_iscdi=true