Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm
Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutat...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2021-03, Vol.19 (1), p.2213-2223 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2223 |
---|---|
container_issue | 1 |
container_start_page | 2213 |
container_title | Organic & biomolecular chemistry |
container_volume | 19 |
creator | Hammers, Matthew D Hodny, Michael H Bader, Taysir K Mahmoodi, M. Mohsen Fang, Sifei Fenton, Alexander D Nurie, Kadiro Trial, Hallie O Xu, Feng Healy, Andrew T Ball, Zachary T Blank, David A Distefano, Mark D |
description | Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes
via
photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from
λ
max
= 315 nm with the unfunctionalized NDBF scaffold to
λ
max
= 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science.
Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively. |
doi_str_mv | 10.1039/d0ob01986k |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2502137888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502137888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</originalsourceid><addsrcrecordid>eNqNkstv1DAQxiNERUvhwh0UiQuiCowf8eOCBAsFRKUKqZwt23F2XbL2NnZ2xX9fL1vC48TJM5rf92lGn6vqCYJXCIh83UE0gKRg3-9VJ4hy3kBL5P25xnBcPUzpGgrEGX1QHRNCqBQYnVRfr3ax2axijqGegtVLH5Z17Gvjo7bZb12dVz4OqfahHvatdUPpdK53eusGF5Z5VVoTy0gA1GH9qDrq9ZDc47v3tPp2_uFq8am5uPz4efH2orFU0ty0xIrOMkaRtdbpvpeik5a4nndYS-BOYmaQ6EULiMjWGIE0Ni3GRLQ96ww5rd4cfDeTWbvOupBHPajN6Nd6_KGi9urvSfArtYxbJSjhCHgxeHFnMMabyaWs1j7tz9PBxSkpTDlGwASjBX3-D3odpzGU8xRuASPChRCFenmg7BhTGl0_L4NA7ZNS7-Hy3c-kvhT42Z_rz-ivaApwdgB2zsQ-We-CdTMGAIwAokBKhXChxf_TC5919jEs4hRykT49SMdkZ8XvP0VuATA5uOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502137888</pqid></control><display><type>article</type><title>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Hammers, Matthew D ; Hodny, Michael H ; Bader, Taysir K ; Mahmoodi, M. Mohsen ; Fang, Sifei ; Fenton, Alexander D ; Nurie, Kadiro ; Trial, Hallie O ; Xu, Feng ; Healy, Andrew T ; Ball, Zachary T ; Blank, David A ; Distefano, Mark D</creator><creatorcontrib>Hammers, Matthew D ; Hodny, Michael H ; Bader, Taysir K ; Mahmoodi, M. Mohsen ; Fang, Sifei ; Fenton, Alexander D ; Nurie, Kadiro ; Trial, Hallie O ; Xu, Feng ; Healy, Andrew T ; Ball, Zachary T ; Blank, David A ; Distefano, Mark D</creatorcontrib><description>Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes
via
photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from
λ
max
= 315 nm with the unfunctionalized NDBF scaffold to
λ
max
= 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science.
Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively.</description><identifier>ISSN: 1477-0520</identifier><identifier>ISSN: 1477-0539</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/d0ob01986k</identifier><identifier>PMID: 33349821</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Absorption ; Animals ; Benzofurans - chemical synthesis ; Benzofurans - chemistry ; Benzofurans - radiation effects ; Biological activity ; Biology ; Chemistry ; Chemistry, Organic ; Crystallography ; Dogs ; Enzyme inhibitors ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Enzyme Inhibitors - radiation effects ; Farnesyltransferase ; Farnesyltranstransferase - antagonists & inhibitors ; Glutathione ; Homeostasis ; Infrared Rays ; Irradiation ; Madin Darby Canine Kidney Cells ; Materials science ; NMR ; Nuclear magnetic resonance ; Orthogonality ; Photoactivation ; Photolysis ; Photolysis - radiation effects ; Photon absorption ; Photons ; Physical Sciences ; Protecting groups ; Protein structure ; Scaffolds ; Science & Technology ; Sulfhydryl Compounds - chemistry ; Sulfhydryl Compounds - pharmacology ; Sulfhydryl Compounds - radiation effects ; Thiols ; Ultraviolet radiation ; Wavelength ; Wavelengths</subject><ispartof>Organic & biomolecular chemistry, 2021-03, Vol.19 (1), p.2213-2223</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630140300012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</citedby><cites>FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</cites><orcidid>0000-0002-8681-0789 ; 0000-0002-2872-0259 ; 0000-0001-7892-3591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33349821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammers, Matthew D</creatorcontrib><creatorcontrib>Hodny, Michael H</creatorcontrib><creatorcontrib>Bader, Taysir K</creatorcontrib><creatorcontrib>Mahmoodi, M. Mohsen</creatorcontrib><creatorcontrib>Fang, Sifei</creatorcontrib><creatorcontrib>Fenton, Alexander D</creatorcontrib><creatorcontrib>Nurie, Kadiro</creatorcontrib><creatorcontrib>Trial, Hallie O</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Healy, Andrew T</creatorcontrib><creatorcontrib>Ball, Zachary T</creatorcontrib><creatorcontrib>Blank, David A</creatorcontrib><creatorcontrib>Distefano, Mark D</creatorcontrib><title>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</title><title>Organic & biomolecular chemistry</title><addtitle>ORG BIOMOL CHEM</addtitle><addtitle>Org Biomol Chem</addtitle><description>Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes
via
photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from
λ
max
= 315 nm with the unfunctionalized NDBF scaffold to
λ
max
= 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science.
Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively.</description><subject>Absorption</subject><subject>Animals</subject><subject>Benzofurans - chemical synthesis</subject><subject>Benzofurans - chemistry</subject><subject>Benzofurans - radiation effects</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Chemistry</subject><subject>Chemistry, Organic</subject><subject>Crystallography</subject><subject>Dogs</subject><subject>Enzyme inhibitors</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzyme Inhibitors - radiation effects</subject><subject>Farnesyltransferase</subject><subject>Farnesyltranstransferase - antagonists & inhibitors</subject><subject>Glutathione</subject><subject>Homeostasis</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Materials science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Orthogonality</subject><subject>Photoactivation</subject><subject>Photolysis</subject><subject>Photolysis - radiation effects</subject><subject>Photon absorption</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Protecting groups</subject><subject>Protein structure</subject><subject>Scaffolds</subject><subject>Science & Technology</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Sulfhydryl Compounds - pharmacology</subject><subject>Sulfhydryl Compounds - radiation effects</subject><subject>Thiols</subject><subject>Ultraviolet radiation</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>1477-0520</issn><issn>1477-0539</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkstv1DAQxiNERUvhwh0UiQuiCowf8eOCBAsFRKUKqZwt23F2XbL2NnZ2xX9fL1vC48TJM5rf92lGn6vqCYJXCIh83UE0gKRg3-9VJ4hy3kBL5P25xnBcPUzpGgrEGX1QHRNCqBQYnVRfr3ax2axijqGegtVLH5Z17Gvjo7bZb12dVz4OqfahHvatdUPpdK53eusGF5Z5VVoTy0gA1GH9qDrq9ZDc47v3tPp2_uFq8am5uPz4efH2orFU0ty0xIrOMkaRtdbpvpeik5a4nndYS-BOYmaQ6EULiMjWGIE0Ni3GRLQ96ww5rd4cfDeTWbvOupBHPajN6Nd6_KGi9urvSfArtYxbJSjhCHgxeHFnMMabyaWs1j7tz9PBxSkpTDlGwASjBX3-D3odpzGU8xRuASPChRCFenmg7BhTGl0_L4NA7ZNS7-Hy3c-kvhT42Z_rz-ivaApwdgB2zsQ-We-CdTMGAIwAokBKhXChxf_TC5919jEs4hRykT49SMdkZ8XvP0VuATA5uOk</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Hammers, Matthew D</creator><creator>Hodny, Michael H</creator><creator>Bader, Taysir K</creator><creator>Mahmoodi, M. Mohsen</creator><creator>Fang, Sifei</creator><creator>Fenton, Alexander D</creator><creator>Nurie, Kadiro</creator><creator>Trial, Hallie O</creator><creator>Xu, Feng</creator><creator>Healy, Andrew T</creator><creator>Ball, Zachary T</creator><creator>Blank, David A</creator><creator>Distefano, Mark D</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>1KM</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8681-0789</orcidid><orcidid>https://orcid.org/0000-0002-2872-0259</orcidid><orcidid>https://orcid.org/0000-0001-7892-3591</orcidid></search><sort><creationdate>20210318</creationdate><title>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</title><author>Hammers, Matthew D ; Hodny, Michael H ; Bader, Taysir K ; Mahmoodi, M. Mohsen ; Fang, Sifei ; Fenton, Alexander D ; Nurie, Kadiro ; Trial, Hallie O ; Xu, Feng ; Healy, Andrew T ; Ball, Zachary T ; Blank, David A ; Distefano, Mark D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-53c8dc6641ccceaff98d9c3ef7d2a907e926b18f8501395bb81a2b522385f6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Animals</topic><topic>Benzofurans - chemical synthesis</topic><topic>Benzofurans - chemistry</topic><topic>Benzofurans - radiation effects</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Chemistry</topic><topic>Chemistry, Organic</topic><topic>Crystallography</topic><topic>Dogs</topic><topic>Enzyme inhibitors</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzyme Inhibitors - radiation effects</topic><topic>Farnesyltransferase</topic><topic>Farnesyltranstransferase - antagonists & inhibitors</topic><topic>Glutathione</topic><topic>Homeostasis</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Materials science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Orthogonality</topic><topic>Photoactivation</topic><topic>Photolysis</topic><topic>Photolysis - radiation effects</topic><topic>Photon absorption</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Protecting groups</topic><topic>Protein structure</topic><topic>Scaffolds</topic><topic>Science & Technology</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Sulfhydryl Compounds - pharmacology</topic><topic>Sulfhydryl Compounds - radiation effects</topic><topic>Thiols</topic><topic>Ultraviolet radiation</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammers, Matthew D</creatorcontrib><creatorcontrib>Hodny, Michael H</creatorcontrib><creatorcontrib>Bader, Taysir K</creatorcontrib><creatorcontrib>Mahmoodi, M. Mohsen</creatorcontrib><creatorcontrib>Fang, Sifei</creatorcontrib><creatorcontrib>Fenton, Alexander D</creatorcontrib><creatorcontrib>Nurie, Kadiro</creatorcontrib><creatorcontrib>Trial, Hallie O</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Healy, Andrew T</creatorcontrib><creatorcontrib>Ball, Zachary T</creatorcontrib><creatorcontrib>Blank, David A</creatorcontrib><creatorcontrib>Distefano, Mark D</creatorcontrib><collection>Index Chemicus</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Organic & biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammers, Matthew D</au><au>Hodny, Michael H</au><au>Bader, Taysir K</au><au>Mahmoodi, M. Mohsen</au><au>Fang, Sifei</au><au>Fenton, Alexander D</au><au>Nurie, Kadiro</au><au>Trial, Hallie O</au><au>Xu, Feng</au><au>Healy, Andrew T</au><au>Ball, Zachary T</au><au>Blank, David A</au><au>Distefano, Mark D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm</atitle><jtitle>Organic & biomolecular chemistry</jtitle><stitle>ORG BIOMOL CHEM</stitle><addtitle>Org Biomol Chem</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>2213</spage><epage>2223</epage><pages>2213-2223</pages><issn>1477-0520</issn><issn>1477-0539</issn><eissn>1477-0539</eissn><abstract>Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes
via
photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from
λ
max
= 315 nm with the unfunctionalized NDBF scaffold to
λ
max
= 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science.
Biological thiols caged with cDMA-NDBF and NDBF photoactivatable protecting groups can be selectively photoactivated using either 850-900 nm TP irradiation or UV irradiation, respectively.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>33349821</pmid><doi>10.1039/d0ob01986k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8681-0789</orcidid><orcidid>https://orcid.org/0000-0002-2872-0259</orcidid><orcidid>https://orcid.org/0000-0001-7892-3591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-0520 |
ispartof | Organic & biomolecular chemistry, 2021-03, Vol.19 (1), p.2213-2223 |
issn | 1477-0520 1477-0539 1477-0539 |
language | eng |
recordid | cdi_proquest_journals_2502137888 |
source | MEDLINE; Royal Society Of Chemistry Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Absorption Animals Benzofurans - chemical synthesis Benzofurans - chemistry Benzofurans - radiation effects Biological activity Biology Chemistry Chemistry, Organic Crystallography Dogs Enzyme inhibitors Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Enzyme Inhibitors - radiation effects Farnesyltransferase Farnesyltranstransferase - antagonists & inhibitors Glutathione Homeostasis Infrared Rays Irradiation Madin Darby Canine Kidney Cells Materials science NMR Nuclear magnetic resonance Orthogonality Photoactivation Photolysis Photolysis - radiation effects Photon absorption Photons Physical Sciences Protecting groups Protein structure Scaffolds Science & Technology Sulfhydryl Compounds - chemistry Sulfhydryl Compounds - pharmacology Sulfhydryl Compounds - radiation effects Thiols Ultraviolet radiation Wavelength Wavelengths |
title | Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-photon%20uncaging%20of%20bioactive%20thiols%20in%20live%20cells%20at%20wavelengths%20above%20800%20nm&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Hammers,%20Matthew%20D&rft.date=2021-03-18&rft.volume=19&rft.issue=1&rft.spage=2213&rft.epage=2223&rft.pages=2213-2223&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/d0ob01986k&rft_dat=%3Cproquest_pubme%3E2502137888%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502137888&rft_id=info:pmid/33349821&rfr_iscdi=true |