Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area
Abstract The urban green space ratio (GSR) is the ratio of the urban greening land area to the built-up area and is an indicator for controlling land use for greening in urban development in China. However, the statistical process for the urban GSR by field manual survey or remote sensing imagery vi...
Gespeichert in:
Veröffentlicht in: | Journal of urban planning and development 2021-06, Vol.147 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of urban planning and development |
container_volume | 147 |
creator | Wang, Jiening Yin, Peizhuo Li, Duanjie Zheng, Guoqiang Sun, Bojie |
description | Abstract
The urban green space ratio (GSR) is the ratio of the urban greening land area to the built-up area and is an indicator for controlling land use for greening in urban development in China. However, the statistical process for the urban GSR by field manual survey or remote sensing imagery visual interpretation is a time-consuming and labor-intensive task. While estimating the urban green canopy ratio (GCR) by spatial information technology has been wildly accepted in the industry. This research investigates the influencing factors between the urban greening land area and the urban green canopy area for exploring the quantitative relationship between GSR and GCR. The results showed that the urban street tree greenbelt is a positive correlation factor, while pavement and water bodies in an urban park are the negative correlation factors. Then, a calculation model of the urban GSR was proposed that will reduce the workload of green space statistics and achieve a high efficiency and accuracy for urban GSR surveys. This model would be applicable in the spatial mapping fields and the spatial planning fields. |
doi_str_mv | 10.1061/(ASCE)UP.1943-5444.0000694 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502107050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502107050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-a200053a736b9b5d2c51b07b80ee7184487be13bad9b418cb023704f53eeff3d3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwHyq4wKHDadKm5TZVYyBNYnyUa5S0LnQaaUla0P49rTY-Lvhiy_b72noIOaUwoRDRy_PpYzq7yJYTmnDmh5zzCfQRJXyPjH56-2QEgjE_4XF8SI6cWwFQLoCNyPN9p0xbtaqtPtB7wHVf1Ma9Vo2nsf1ENF5mtTLe3A51qkzdbLypReUpU_ydVebFWwy9YXhMDkq1dniyy2OSXc-e0ht_cTe_TacLX7EEWl8F_bMhU4JFOtFhEeQh1SB0DIiCxpzHQiNlWhWJ5jTONQRMAC9DhliWrGBjcrb1bWz93qFr5arurOlPyiCEgIKAEPqtq-1WbmvnLJaysdWbshtJQQ4cpRw4ymwpB2ZyYCZ3HHtxtBUrl-Ov_bfyf-EXTph2bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502107050</pqid></control><display><type>article</type><title>Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Wang, Jiening ; Yin, Peizhuo ; Li, Duanjie ; Zheng, Guoqiang ; Sun, Bojie</creator><creatorcontrib>Wang, Jiening ; Yin, Peizhuo ; Li, Duanjie ; Zheng, Guoqiang ; Sun, Bojie</creatorcontrib><description>Abstract
The urban green space ratio (GSR) is the ratio of the urban greening land area to the built-up area and is an indicator for controlling land use for greening in urban development in China. However, the statistical process for the urban GSR by field manual survey or remote sensing imagery visual interpretation is a time-consuming and labor-intensive task. While estimating the urban green canopy ratio (GCR) by spatial information technology has been wildly accepted in the industry. This research investigates the influencing factors between the urban greening land area and the urban green canopy area for exploring the quantitative relationship between GSR and GCR. The results showed that the urban street tree greenbelt is a positive correlation factor, while pavement and water bodies in an urban park are the negative correlation factors. Then, a calculation model of the urban GSR was proposed that will reduce the workload of green space statistics and achieve a high efficiency and accuracy for urban GSR surveys. This model would be applicable in the spatial mapping fields and the spatial planning fields.</description><identifier>ISSN: 0733-9488</identifier><identifier>EISSN: 1943-5444</identifier><identifier>DOI: 10.1061/(ASCE)UP.1943-5444.0000694</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Canopies ; Case Studies ; Case Study ; Correlation coefficients ; Green belts ; Greening ; Imagery ; Information technology ; Land area ; Land use ; Mental task performance ; Model accuracy ; Open spaces ; Polls & surveys ; Remote sensing ; Spatial data ; Urban areas ; Urban development ; Urban planning ; Visual system</subject><ispartof>Journal of urban planning and development, 2021-06, Vol.147 (2)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-a200053a736b9b5d2c51b07b80ee7184487be13bad9b418cb023704f53eeff3d3</citedby><cites>FETCH-LOGICAL-a390t-a200053a736b9b5d2c51b07b80ee7184487be13bad9b418cb023704f53eeff3d3</cites><orcidid>0000-0002-1728-0358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)UP.1943-5444.0000694$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)UP.1943-5444.0000694$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,75954,75962</link.rule.ids></links><search><creatorcontrib>Wang, Jiening</creatorcontrib><creatorcontrib>Yin, Peizhuo</creatorcontrib><creatorcontrib>Li, Duanjie</creatorcontrib><creatorcontrib>Zheng, Guoqiang</creatorcontrib><creatorcontrib>Sun, Bojie</creatorcontrib><title>Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area</title><title>Journal of urban planning and development</title><description>Abstract
The urban green space ratio (GSR) is the ratio of the urban greening land area to the built-up area and is an indicator for controlling land use for greening in urban development in China. However, the statistical process for the urban GSR by field manual survey or remote sensing imagery visual interpretation is a time-consuming and labor-intensive task. While estimating the urban green canopy ratio (GCR) by spatial information technology has been wildly accepted in the industry. This research investigates the influencing factors between the urban greening land area and the urban green canopy area for exploring the quantitative relationship between GSR and GCR. The results showed that the urban street tree greenbelt is a positive correlation factor, while pavement and water bodies in an urban park are the negative correlation factors. Then, a calculation model of the urban GSR was proposed that will reduce the workload of green space statistics and achieve a high efficiency and accuracy for urban GSR surveys. This model would be applicable in the spatial mapping fields and the spatial planning fields.</description><subject>Canopies</subject><subject>Case Studies</subject><subject>Case Study</subject><subject>Correlation coefficients</subject><subject>Green belts</subject><subject>Greening</subject><subject>Imagery</subject><subject>Information technology</subject><subject>Land area</subject><subject>Land use</subject><subject>Mental task performance</subject><subject>Model accuracy</subject><subject>Open spaces</subject><subject>Polls & surveys</subject><subject>Remote sensing</subject><subject>Spatial data</subject><subject>Urban areas</subject><subject>Urban development</subject><subject>Urban planning</subject><subject>Visual system</subject><issn>0733-9488</issn><issn>1943-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmPwHyq4wKHDadKm5TZVYyBNYnyUa5S0LnQaaUla0P49rTY-Lvhiy_b72noIOaUwoRDRy_PpYzq7yJYTmnDmh5zzCfQRJXyPjH56-2QEgjE_4XF8SI6cWwFQLoCNyPN9p0xbtaqtPtB7wHVf1Ma9Vo2nsf1ENF5mtTLe3A51qkzdbLypReUpU_ydVebFWwy9YXhMDkq1dniyy2OSXc-e0ht_cTe_TacLX7EEWl8F_bMhU4JFOtFhEeQh1SB0DIiCxpzHQiNlWhWJ5jTONQRMAC9DhliWrGBjcrb1bWz93qFr5arurOlPyiCEgIKAEPqtq-1WbmvnLJaysdWbshtJQQ4cpRw4ymwpB2ZyYCZ3HHtxtBUrl-Ov_bfyf-EXTph2bQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Wang, Jiening</creator><creator>Yin, Peizhuo</creator><creator>Li, Duanjie</creator><creator>Zheng, Guoqiang</creator><creator>Sun, Bojie</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1728-0358</orcidid></search><sort><creationdate>20210601</creationdate><title>Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area</title><author>Wang, Jiening ; Yin, Peizhuo ; Li, Duanjie ; Zheng, Guoqiang ; Sun, Bojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-a200053a736b9b5d2c51b07b80ee7184487be13bad9b418cb023704f53eeff3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Canopies</topic><topic>Case Studies</topic><topic>Case Study</topic><topic>Correlation coefficients</topic><topic>Green belts</topic><topic>Greening</topic><topic>Imagery</topic><topic>Information technology</topic><topic>Land area</topic><topic>Land use</topic><topic>Mental task performance</topic><topic>Model accuracy</topic><topic>Open spaces</topic><topic>Polls & surveys</topic><topic>Remote sensing</topic><topic>Spatial data</topic><topic>Urban areas</topic><topic>Urban development</topic><topic>Urban planning</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiening</creatorcontrib><creatorcontrib>Yin, Peizhuo</creatorcontrib><creatorcontrib>Li, Duanjie</creatorcontrib><creatorcontrib>Zheng, Guoqiang</creatorcontrib><creatorcontrib>Sun, Bojie</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of urban planning and development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiening</au><au>Yin, Peizhuo</au><au>Li, Duanjie</au><au>Zheng, Guoqiang</au><au>Sun, Bojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area</atitle><jtitle>Journal of urban planning and development</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>147</volume><issue>2</issue><issn>0733-9488</issn><eissn>1943-5444</eissn><abstract>Abstract
The urban green space ratio (GSR) is the ratio of the urban greening land area to the built-up area and is an indicator for controlling land use for greening in urban development in China. However, the statistical process for the urban GSR by field manual survey or remote sensing imagery visual interpretation is a time-consuming and labor-intensive task. While estimating the urban green canopy ratio (GCR) by spatial information technology has been wildly accepted in the industry. This research investigates the influencing factors between the urban greening land area and the urban green canopy area for exploring the quantitative relationship between GSR and GCR. The results showed that the urban street tree greenbelt is a positive correlation factor, while pavement and water bodies in an urban park are the negative correlation factors. Then, a calculation model of the urban GSR was proposed that will reduce the workload of green space statistics and achieve a high efficiency and accuracy for urban GSR surveys. This model would be applicable in the spatial mapping fields and the spatial planning fields.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)UP.1943-5444.0000694</doi><orcidid>https://orcid.org/0000-0002-1728-0358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9488 |
ispartof | Journal of urban planning and development, 2021-06, Vol.147 (2) |
issn | 0733-9488 1943-5444 |
language | eng |
recordid | cdi_proquest_journals_2502107050 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Canopies Case Studies Case Study Correlation coefficients Green belts Greening Imagery Information technology Land area Land use Mental task performance Model accuracy Open spaces Polls & surveys Remote sensing Spatial data Urban areas Urban development Urban planning Visual system |
title | Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Relationship%20between%20Urban%20Green%20Canopy%20Area%20and%20Urban%20Greening%20Land%20Area&rft.jtitle=Journal%20of%20urban%20planning%20and%20development&rft.au=Wang,%20Jiening&rft.date=2021-06-01&rft.volume=147&rft.issue=2&rft.issn=0733-9488&rft.eissn=1943-5444&rft_id=info:doi/10.1061/(ASCE)UP.1943-5444.0000694&rft_dat=%3Cproquest_cross%3E2502107050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502107050&rft_id=info:pmid/&rfr_iscdi=true |