An asymptotic preserving scheme for L\'{e}vy-Fokker-Planck equation with fractional diffusion limit

In this paper, we develop a numerical method for the Lévy-Fokker-Planck equation with the fractional diffusive scaling. There are two main challenges. One comes from a two-fold nonlocality, that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The other aris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Xu, Wuzhe, Wang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xu, Wuzhe
Wang, Li
description In this paper, we develop a numerical method for the Lévy-Fokker-Planck equation with the fractional diffusive scaling. There are two main challenges. One comes from a two-fold nonlocality, that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The other arises from long-time/small mean-free-path scaling, which introduces stiffness to the equation. To resolve the first difficulty, we use a change of variable to convert the unbounded domain into a bounded one and then apply the Chebyshev polynomial based pseudo-spectral method. To treat the multiple scales, we propose an asymptotic preserving scheme based on a novel micro-macro decomposition that uses the structure of the test function in proving the fractional diffusion limit analytically. Finally, the efficiency and accuracy of our scheme are illustrated by a suite of numerical examples.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2502074202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502074202</sourcerecordid><originalsourceid>FETCH-proquest_journals_25020742023</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgKOo7XHBwKsTb1rqKKA4ODo6ChHij6V9qbqqI-O4q-ABOH4dzvo7oYxxPo3mC2BMj5lxKibMM0zTuC72oQfGjaoILVkPjicnfbH0G1heqCIzzsD1MnvS6PaK1Kwry0a5UtS6Arq0K1tVwt-ECxiv9JVXCyRrT8teUtrJhKLpGlUyj3w7EeL3aLzdR4921JQ7H3LX-c-QjphJllqDE-L_qDTq9RrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502074202</pqid></control><display><type>article</type><title>An asymptotic preserving scheme for L\'{e}vy-Fokker-Planck equation with fractional diffusion limit</title><source>Free E- Journals</source><creator>Xu, Wuzhe ; Wang, Li</creator><creatorcontrib>Xu, Wuzhe ; Wang, Li</creatorcontrib><description>In this paper, we develop a numerical method for the Lévy-Fokker-Planck equation with the fractional diffusive scaling. There are two main challenges. One comes from a two-fold nonlocality, that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The other arises from long-time/small mean-free-path scaling, which introduces stiffness to the equation. To resolve the first difficulty, we use a change of variable to convert the unbounded domain into a bounded one and then apply the Chebyshev polynomial based pseudo-spectral method. To treat the multiple scales, we propose an asymptotic preserving scheme based on a novel micro-macro decomposition that uses the structure of the test function in proving the fractional diffusion limit analytically. Finally, the efficiency and accuracy of our scheme are illustrated by a suite of numerical examples.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Asymptotic properties ; Chebyshev approximation ; Fokker-Planck equation ; Mathematical analysis ; Numerical methods ; Polynomials ; Spectral methods ; Stiffness</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Xu, Wuzhe</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>An asymptotic preserving scheme for L\'{e}vy-Fokker-Planck equation with fractional diffusion limit</title><title>arXiv.org</title><description>In this paper, we develop a numerical method for the Lévy-Fokker-Planck equation with the fractional diffusive scaling. There are two main challenges. One comes from a two-fold nonlocality, that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The other arises from long-time/small mean-free-path scaling, which introduces stiffness to the equation. To resolve the first difficulty, we use a change of variable to convert the unbounded domain into a bounded one and then apply the Chebyshev polynomial based pseudo-spectral method. To treat the multiple scales, we propose an asymptotic preserving scheme based on a novel micro-macro decomposition that uses the structure of the test function in proving the fractional diffusion limit analytically. Finally, the efficiency and accuracy of our scheme are illustrated by a suite of numerical examples.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Chebyshev approximation</subject><subject>Fokker-Planck equation</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Polynomials</subject><subject>Spectral methods</subject><subject>Stiffness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAURoMgKOo7XHBwKsTb1rqKKA4ODo6ChHij6V9qbqqI-O4q-ABOH4dzvo7oYxxPo3mC2BMj5lxKibMM0zTuC72oQfGjaoILVkPjicnfbH0G1heqCIzzsD1MnvS6PaK1Kwry0a5UtS6Arq0K1tVwt-ECxiv9JVXCyRrT8teUtrJhKLpGlUyj3w7EeL3aLzdR4921JQ7H3LX-c-QjphJllqDE-L_qDTq9RrA</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Xu, Wuzhe</creator><creator>Wang, Li</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210321</creationdate><title>An asymptotic preserving scheme for L\'{e}vy-Fokker-Planck equation with fractional diffusion limit</title><author>Xu, Wuzhe ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25020742023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Chebyshev approximation</topic><topic>Fokker-Planck equation</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Polynomials</topic><topic>Spectral methods</topic><topic>Stiffness</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wuzhe</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wuzhe</au><au>Wang, Li</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An asymptotic preserving scheme for L\'{e}vy-Fokker-Planck equation with fractional diffusion limit</atitle><jtitle>arXiv.org</jtitle><date>2021-03-21</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we develop a numerical method for the Lévy-Fokker-Planck equation with the fractional diffusive scaling. There are two main challenges. One comes from a two-fold nonlocality, that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The other arises from long-time/small mean-free-path scaling, which introduces stiffness to the equation. To resolve the first difficulty, we use a change of variable to convert the unbounded domain into a bounded one and then apply the Chebyshev polynomial based pseudo-spectral method. To treat the multiple scales, we propose an asymptotic preserving scheme based on a novel micro-macro decomposition that uses the structure of the test function in proving the fractional diffusion limit analytically. Finally, the efficiency and accuracy of our scheme are illustrated by a suite of numerical examples.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2502074202
source Free E- Journals
subjects Asymptotic methods
Asymptotic properties
Chebyshev approximation
Fokker-Planck equation
Mathematical analysis
Numerical methods
Polynomials
Spectral methods
Stiffness
title An asymptotic preserving scheme for L\'{e}vy-Fokker-Planck equation with fractional diffusion limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20asymptotic%20preserving%20scheme%20for%20L%5C'%7Be%7Dvy-Fokker-Planck%20equation%20with%20fractional%20diffusion%20limit&rft.jtitle=arXiv.org&rft.au=Xu,%20Wuzhe&rft.date=2021-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2502074202%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502074202&rft_id=info:pmid/&rfr_iscdi=true