A two-way factor model for high-dimensional matrix data
In this article, we introduce a two-way factor model for a high-dimensional data matrix and study the properties of the maximum likelihood estimation (MLE). The proposed model assumes separable effects of row and column attributes and captures the correlation across rows and columns with low-dimensi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gao Zhigen Yuan Chaofeng Bingyi, Jing Huang, Wei Guo Jianhua |
description | In this article, we introduce a two-way factor model for a high-dimensional data matrix and study the properties of the maximum likelihood estimation (MLE). The proposed model assumes separable effects of row and column attributes and captures the correlation across rows and columns with low-dimensional hidden factors. The model inherits the dimension-reduction feature of classical factor models but introduces a new framework with separable row and column factors, representing the covariance or correlation structure in the data matrix. We propose a block alternating, maximizing strategy to compute the MLE of factor loadings as well as other model parameters. We discuss model identifiability, obtain consistency and the asymptotic distribution for the MLE as the numbers of rows and columns in the data matrix increase. One interesting phenomenon that we learned from our analysis is that the variance of the estimates in the two-way factor model depends on the distance of variances of row factors and column factors in a way that is not expected in classical factor analysis. We further demonstrate the performance of the proposed method through simulation and real data analysis. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2502073738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502073738</sourcerecordid><originalsourceid>FETCH-proquest_journals_25020737383</originalsourceid><addsrcrecordid>eNqNi0EKAiEUQCUIGmruILQW7Js524iiA7QfPqmNg46lDlO3bxYdoNV7i_cWpAIhdqzZA6xInXPPOYeDAilFRdSRlimyCT_U4r3EREPUxlM7W-ceHdMumCG7OKCnAUtyb6qx4IYsLfps6h_XZHs5305X9kzxNZpc2j6OaZ5yC5IDV0KJRvxXfQHcszVl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502073738</pqid></control><display><type>article</type><title>A two-way factor model for high-dimensional matrix data</title><source>Freely Accessible Journals at publisher websites</source><creator>Gao Zhigen ; Yuan Chaofeng ; Bingyi, Jing ; Huang, Wei ; Guo Jianhua</creator><creatorcontrib>Gao Zhigen ; Yuan Chaofeng ; Bingyi, Jing ; Huang, Wei ; Guo Jianhua</creatorcontrib><description>In this article, we introduce a two-way factor model for a high-dimensional data matrix and study the properties of the maximum likelihood estimation (MLE). The proposed model assumes separable effects of row and column attributes and captures the correlation across rows and columns with low-dimensional hidden factors. The model inherits the dimension-reduction feature of classical factor models but introduces a new framework with separable row and column factors, representing the covariance or correlation structure in the data matrix. We propose a block alternating, maximizing strategy to compute the MLE of factor loadings as well as other model parameters. We discuss model identifiability, obtain consistency and the asymptotic distribution for the MLE as the numbers of rows and columns in the data matrix increase. One interesting phenomenon that we learned from our analysis is that the variance of the estimates in the two-way factor model depends on the distance of variances of row factors and column factors in a way that is not expected in classical factor analysis. We further demonstrate the performance of the proposed method through simulation and real data analysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Columnar structure ; Covariance ; Data analysis ; Factor analysis ; Maximum likelihood estimation ; Parameter identification</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gao Zhigen</creatorcontrib><creatorcontrib>Yuan Chaofeng</creatorcontrib><creatorcontrib>Bingyi, Jing</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Guo Jianhua</creatorcontrib><title>A two-way factor model for high-dimensional matrix data</title><title>arXiv.org</title><description>In this article, we introduce a two-way factor model for a high-dimensional data matrix and study the properties of the maximum likelihood estimation (MLE). The proposed model assumes separable effects of row and column attributes and captures the correlation across rows and columns with low-dimensional hidden factors. The model inherits the dimension-reduction feature of classical factor models but introduces a new framework with separable row and column factors, representing the covariance or correlation structure in the data matrix. We propose a block alternating, maximizing strategy to compute the MLE of factor loadings as well as other model parameters. We discuss model identifiability, obtain consistency and the asymptotic distribution for the MLE as the numbers of rows and columns in the data matrix increase. One interesting phenomenon that we learned from our analysis is that the variance of the estimates in the two-way factor model depends on the distance of variances of row factors and column factors in a way that is not expected in classical factor analysis. We further demonstrate the performance of the proposed method through simulation and real data analysis.</description><subject>Columnar structure</subject><subject>Covariance</subject><subject>Data analysis</subject><subject>Factor analysis</subject><subject>Maximum likelihood estimation</subject><subject>Parameter identification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0EKAiEUQCUIGmruILQW7Js524iiA7QfPqmNg46lDlO3bxYdoNV7i_cWpAIhdqzZA6xInXPPOYeDAilFRdSRlimyCT_U4r3EREPUxlM7W-ceHdMumCG7OKCnAUtyb6qx4IYsLfps6h_XZHs5305X9kzxNZpc2j6OaZ5yC5IDV0KJRvxXfQHcszVl</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>Gao Zhigen</creator><creator>Yuan Chaofeng</creator><creator>Bingyi, Jing</creator><creator>Huang, Wei</creator><creator>Guo Jianhua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210316</creationdate><title>A two-way factor model for high-dimensional matrix data</title><author>Gao Zhigen ; Yuan Chaofeng ; Bingyi, Jing ; Huang, Wei ; Guo Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25020737383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Columnar structure</topic><topic>Covariance</topic><topic>Data analysis</topic><topic>Factor analysis</topic><topic>Maximum likelihood estimation</topic><topic>Parameter identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao Zhigen</creatorcontrib><creatorcontrib>Yuan Chaofeng</creatorcontrib><creatorcontrib>Bingyi, Jing</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Guo Jianhua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao Zhigen</au><au>Yuan Chaofeng</au><au>Bingyi, Jing</au><au>Huang, Wei</au><au>Guo Jianhua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A two-way factor model for high-dimensional matrix data</atitle><jtitle>arXiv.org</jtitle><date>2021-03-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this article, we introduce a two-way factor model for a high-dimensional data matrix and study the properties of the maximum likelihood estimation (MLE). The proposed model assumes separable effects of row and column attributes and captures the correlation across rows and columns with low-dimensional hidden factors. The model inherits the dimension-reduction feature of classical factor models but introduces a new framework with separable row and column factors, representing the covariance or correlation structure in the data matrix. We propose a block alternating, maximizing strategy to compute the MLE of factor loadings as well as other model parameters. We discuss model identifiability, obtain consistency and the asymptotic distribution for the MLE as the numbers of rows and columns in the data matrix increase. One interesting phenomenon that we learned from our analysis is that the variance of the estimates in the two-way factor model depends on the distance of variances of row factors and column factors in a way that is not expected in classical factor analysis. We further demonstrate the performance of the proposed method through simulation and real data analysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2502073738 |
source | Freely Accessible Journals at publisher websites |
subjects | Columnar structure Covariance Data analysis Factor analysis Maximum likelihood estimation Parameter identification |
title | A two-way factor model for high-dimensional matrix data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20two-way%20factor%20model%20for%20high-dimensional%20matrix%20data&rft.jtitle=arXiv.org&rft.au=Gao%20Zhigen&rft.date=2021-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2502073738%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502073738&rft_id=info:pmid/&rfr_iscdi=true |