Light intensity alters the phytoremediation potential of Lemna minor

Lemnaceae, i.e. duckweed species, are attractive for phytoremediation of wastewaters, primarily due to their rapid growth, high nutrient uptake rates, tolerance to a broad range of growing conditions and ability to expeditiously assimilate a variety of pollutants. Light is essential for plant growth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-04, Vol.28 (13), p.16394-16407
Hauptverfasser: Walsh, Éamonn, Kuehnhold, Holger, O’Brien, Seán, Coughlan, Neil E., Jansen, Marcel A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16407
container_issue 13
container_start_page 16394
container_title Environmental science and pollution research international
container_volume 28
creator Walsh, Éamonn
Kuehnhold, Holger
O’Brien, Seán
Coughlan, Neil E.
Jansen, Marcel A.K.
description Lemnaceae, i.e. duckweed species, are attractive for phytoremediation of wastewaters, primarily due to their rapid growth, high nutrient uptake rates, tolerance to a broad range of growing conditions and ability to expeditiously assimilate a variety of pollutants. Light is essential for plant growth, and therefore, phytoremediation. Nevertheless, the effect of light intensity remains poorly understood in relation to phytoremediation, a knowledge gap that impedes the development of indoor, fully controlled, stacked remediation systems. In the present study, the effect of light intensity (10–850 μmol m −2  s −1 ) on the phytoremediation potential of Lemna minor was assessed. Plants were grown on either an optimal growth medium (half-strength Hutner’s) or synthetic dairy processing wastewater, using stationary axenic (100 mL) or re-circulating non-sterile (11.7 L) systems. The relative growth rate (RGR) of L. minor grown on half-strength Hutner’s increased proportionally with increasing light intensity. In contrast, the RGR of L. minor grown on synthetic dairy wastewater did not increase with light over an intensity range from 50 to 850 μmol m −2  s −1 . On synthetic dairy wastewater, total nitrogen and total phosphorous removal also remained unchanged between 50 and 850 μmol m −2  s −1 , although L. minor protein content (% fresh weight) increased from 1.5 to 2% at higher light intensities. Similar results were obtained with the larger re-circulating system. The results demonstrate interactive effects of light intensity and wastewater composition on growth and phytoremediation potential of L. minor . The data imply that light intensities above 50 μmol m −2  s −1 may not necessarily confer benefits in duckweed wastewater remediation, and this informs engineering of stacked, indoor remediation systems.
doi_str_mv 10.1007/s11356-020-11792-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502068311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502068311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-540838e61c060bcaadb67260fbfaa1e355b394d23477c8c85e40f05a62b8dfb33</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoiXwBxiQJWaDv2InIyqfUiQWmC0ncVpXTRxsd8i_x5ACG9Mb3rn36R0ALgm-IRjL20AIywXCFCNCZEnRdASWRBCOJC_LY7DEJeeIMM4X4CyELU5kSeUpWDDGCsmoXIL7yq43EdohmiHYOEG9i8YHGDcGjpspOm9601odrRvg6BIVrd5B18HK9IOGvR2cPwcnnd4Fc3GYGXh_fHhbPaPq9elldVehhhMaUc5xwQojSIMFrhut21pIKnBXd1oTw_K8ZiVvKeNSNkVT5IbjDuda0Lpou5qxDFzPvaN3H3sTotq6vR_SSUXz9JwoWFKSATpTjXcheNOp0dte-0kRrL7EqVmcSgn1LU5NKXR1qN7X6eHfyI-pBLAZCGk1rI3_u_1P7Setwnls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502068311</pqid></control><display><type>article</type><title>Light intensity alters the phytoremediation potential of Lemna minor</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Walsh, Éamonn ; Kuehnhold, Holger ; O’Brien, Seán ; Coughlan, Neil E. ; Jansen, Marcel A.K.</creator><creatorcontrib>Walsh, Éamonn ; Kuehnhold, Holger ; O’Brien, Seán ; Coughlan, Neil E. ; Jansen, Marcel A.K.</creatorcontrib><description>Lemnaceae, i.e. duckweed species, are attractive for phytoremediation of wastewaters, primarily due to their rapid growth, high nutrient uptake rates, tolerance to a broad range of growing conditions and ability to expeditiously assimilate a variety of pollutants. Light is essential for plant growth, and therefore, phytoremediation. Nevertheless, the effect of light intensity remains poorly understood in relation to phytoremediation, a knowledge gap that impedes the development of indoor, fully controlled, stacked remediation systems. In the present study, the effect of light intensity (10–850 μmol m −2  s −1 ) on the phytoremediation potential of Lemna minor was assessed. Plants were grown on either an optimal growth medium (half-strength Hutner’s) or synthetic dairy processing wastewater, using stationary axenic (100 mL) or re-circulating non-sterile (11.7 L) systems. The relative growth rate (RGR) of L. minor grown on half-strength Hutner’s increased proportionally with increasing light intensity. In contrast, the RGR of L. minor grown on synthetic dairy wastewater did not increase with light over an intensity range from 50 to 850 μmol m −2  s −1 . On synthetic dairy wastewater, total nitrogen and total phosphorous removal also remained unchanged between 50 and 850 μmol m −2  s −1 , although L. minor protein content (% fresh weight) increased from 1.5 to 2% at higher light intensities. Similar results were obtained with the larger re-circulating system. The results demonstrate interactive effects of light intensity and wastewater composition on growth and phytoremediation potential of L. minor . The data imply that light intensities above 50 μmol m −2  s −1 may not necessarily confer benefits in duckweed wastewater remediation, and this informs engineering of stacked, indoor remediation systems.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-11792-y</identifier><identifier>PMID: 33387327</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic plants ; Aquatic Pollution ; Araceae ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biodegradation, Environmental ; Dairy industry wastewaters ; Duckweed ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Floating plants ; Germfree ; Growth rate ; Lemna minor ; Light ; Light intensity ; Luminous intensity ; Nitrogen ; Nutrient content ; Nutrient uptake ; Phosphorus ; Phytoremediation ; Plant growth ; Pollutants ; Remediation ; Research Article ; Waste Water ; Waste Water Technology ; Wastewater ; Wastewater composition ; Wastewater treatment ; Water Management ; Water Pollutants, Chemical - analysis ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-04, Vol.28 (13), p.16394-16407</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-540838e61c060bcaadb67260fbfaa1e355b394d23477c8c85e40f05a62b8dfb33</citedby><cites>FETCH-LOGICAL-c412t-540838e61c060bcaadb67260fbfaa1e355b394d23477c8c85e40f05a62b8dfb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-11792-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-11792-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33387327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walsh, Éamonn</creatorcontrib><creatorcontrib>Kuehnhold, Holger</creatorcontrib><creatorcontrib>O’Brien, Seán</creatorcontrib><creatorcontrib>Coughlan, Neil E.</creatorcontrib><creatorcontrib>Jansen, Marcel A.K.</creatorcontrib><title>Light intensity alters the phytoremediation potential of Lemna minor</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Lemnaceae, i.e. duckweed species, are attractive for phytoremediation of wastewaters, primarily due to their rapid growth, high nutrient uptake rates, tolerance to a broad range of growing conditions and ability to expeditiously assimilate a variety of pollutants. Light is essential for plant growth, and therefore, phytoremediation. Nevertheless, the effect of light intensity remains poorly understood in relation to phytoremediation, a knowledge gap that impedes the development of indoor, fully controlled, stacked remediation systems. In the present study, the effect of light intensity (10–850 μmol m −2  s −1 ) on the phytoremediation potential of Lemna minor was assessed. Plants were grown on either an optimal growth medium (half-strength Hutner’s) or synthetic dairy processing wastewater, using stationary axenic (100 mL) or re-circulating non-sterile (11.7 L) systems. The relative growth rate (RGR) of L. minor grown on half-strength Hutner’s increased proportionally with increasing light intensity. In contrast, the RGR of L. minor grown on synthetic dairy wastewater did not increase with light over an intensity range from 50 to 850 μmol m −2  s −1 . On synthetic dairy wastewater, total nitrogen and total phosphorous removal also remained unchanged between 50 and 850 μmol m −2  s −1 , although L. minor protein content (% fresh weight) increased from 1.5 to 2% at higher light intensities. Similar results were obtained with the larger re-circulating system. The results demonstrate interactive effects of light intensity and wastewater composition on growth and phytoremediation potential of L. minor . The data imply that light intensities above 50 μmol m −2  s −1 may not necessarily confer benefits in duckweed wastewater remediation, and this informs engineering of stacked, indoor remediation systems.</description><subject>Aquatic plants</subject><subject>Aquatic Pollution</subject><subject>Araceae</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biodegradation, Environmental</subject><subject>Dairy industry wastewaters</subject><subject>Duckweed</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Floating plants</subject><subject>Germfree</subject><subject>Growth rate</subject><subject>Lemna minor</subject><subject>Light</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Nitrogen</subject><subject>Nutrient content</subject><subject>Nutrient uptake</subject><subject>Phosphorus</subject><subject>Phytoremediation</subject><subject>Plant growth</subject><subject>Pollutants</subject><subject>Remediation</subject><subject>Research Article</subject><subject>Waste Water</subject><subject>Waste Water Technology</subject><subject>Wastewater</subject><subject>Wastewater composition</subject><subject>Wastewater treatment</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAURS0EoiXwBxiQJWaDv2InIyqfUiQWmC0ncVpXTRxsd8i_x5ACG9Mb3rn36R0ALgm-IRjL20AIywXCFCNCZEnRdASWRBCOJC_LY7DEJeeIMM4X4CyELU5kSeUpWDDGCsmoXIL7yq43EdohmiHYOEG9i8YHGDcGjpspOm9601odrRvg6BIVrd5B18HK9IOGvR2cPwcnnd4Fc3GYGXh_fHhbPaPq9elldVehhhMaUc5xwQojSIMFrhut21pIKnBXd1oTw_K8ZiVvKeNSNkVT5IbjDuda0Lpou5qxDFzPvaN3H3sTotq6vR_SSUXz9JwoWFKSATpTjXcheNOp0dte-0kRrL7EqVmcSgn1LU5NKXR1qN7X6eHfyI-pBLAZCGk1rI3_u_1P7Setwnls</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Walsh, Éamonn</creator><creator>Kuehnhold, Holger</creator><creator>O’Brien, Seán</creator><creator>Coughlan, Neil E.</creator><creator>Jansen, Marcel A.K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20210401</creationdate><title>Light intensity alters the phytoremediation potential of Lemna minor</title><author>Walsh, Éamonn ; Kuehnhold, Holger ; O’Brien, Seán ; Coughlan, Neil E. ; Jansen, Marcel A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-540838e61c060bcaadb67260fbfaa1e355b394d23477c8c85e40f05a62b8dfb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic plants</topic><topic>Aquatic Pollution</topic><topic>Araceae</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biodegradation, Environmental</topic><topic>Dairy industry wastewaters</topic><topic>Duckweed</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Floating plants</topic><topic>Germfree</topic><topic>Growth rate</topic><topic>Lemna minor</topic><topic>Light</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Nitrogen</topic><topic>Nutrient content</topic><topic>Nutrient uptake</topic><topic>Phosphorus</topic><topic>Phytoremediation</topic><topic>Plant growth</topic><topic>Pollutants</topic><topic>Remediation</topic><topic>Research Article</topic><topic>Waste Water</topic><topic>Waste Water Technology</topic><topic>Wastewater</topic><topic>Wastewater composition</topic><topic>Wastewater treatment</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, Éamonn</creatorcontrib><creatorcontrib>Kuehnhold, Holger</creatorcontrib><creatorcontrib>O’Brien, Seán</creatorcontrib><creatorcontrib>Coughlan, Neil E.</creatorcontrib><creatorcontrib>Jansen, Marcel A.K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, Éamonn</au><au>Kuehnhold, Holger</au><au>O’Brien, Seán</au><au>Coughlan, Neil E.</au><au>Jansen, Marcel A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light intensity alters the phytoremediation potential of Lemna minor</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>28</volume><issue>13</issue><spage>16394</spage><epage>16407</epage><pages>16394-16407</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Lemnaceae, i.e. duckweed species, are attractive for phytoremediation of wastewaters, primarily due to their rapid growth, high nutrient uptake rates, tolerance to a broad range of growing conditions and ability to expeditiously assimilate a variety of pollutants. Light is essential for plant growth, and therefore, phytoremediation. Nevertheless, the effect of light intensity remains poorly understood in relation to phytoremediation, a knowledge gap that impedes the development of indoor, fully controlled, stacked remediation systems. In the present study, the effect of light intensity (10–850 μmol m −2  s −1 ) on the phytoremediation potential of Lemna minor was assessed. Plants were grown on either an optimal growth medium (half-strength Hutner’s) or synthetic dairy processing wastewater, using stationary axenic (100 mL) or re-circulating non-sterile (11.7 L) systems. The relative growth rate (RGR) of L. minor grown on half-strength Hutner’s increased proportionally with increasing light intensity. In contrast, the RGR of L. minor grown on synthetic dairy wastewater did not increase with light over an intensity range from 50 to 850 μmol m −2  s −1 . On synthetic dairy wastewater, total nitrogen and total phosphorous removal also remained unchanged between 50 and 850 μmol m −2  s −1 , although L. minor protein content (% fresh weight) increased from 1.5 to 2% at higher light intensities. Similar results were obtained with the larger re-circulating system. The results demonstrate interactive effects of light intensity and wastewater composition on growth and phytoremediation potential of L. minor . The data imply that light intensities above 50 μmol m −2  s −1 may not necessarily confer benefits in duckweed wastewater remediation, and this informs engineering of stacked, indoor remediation systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33387327</pmid><doi>10.1007/s11356-020-11792-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2021-04, Vol.28 (13), p.16394-16407
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_journals_2502068311
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aquatic plants
Aquatic Pollution
Araceae
Atmospheric Protection/Air Quality Control/Air Pollution
Biodegradation, Environmental
Dairy industry wastewaters
Duckweed
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Floating plants
Germfree
Growth rate
Lemna minor
Light
Light intensity
Luminous intensity
Nitrogen
Nutrient content
Nutrient uptake
Phosphorus
Phytoremediation
Plant growth
Pollutants
Remediation
Research Article
Waste Water
Waste Water Technology
Wastewater
Wastewater composition
Wastewater treatment
Water Management
Water Pollutants, Chemical - analysis
Water Pollution Control
title Light intensity alters the phytoremediation potential of Lemna minor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20intensity%20alters%20the%20phytoremediation%20potential%20of%20Lemna%20minor&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Walsh,%20%C3%89amonn&rft.date=2021-04-01&rft.volume=28&rft.issue=13&rft.spage=16394&rft.epage=16407&rft.pages=16394-16407&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-11792-y&rft_dat=%3Cproquest_cross%3E2502068311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502068311&rft_id=info:pmid/33387327&rfr_iscdi=true