Unveiling the Role of Al2O3 Interlayer in Indium–Gallium–Zinc–Oxide Transistors

Although insertion of a thin insulating layer between metal electrodes and a semiconducting channel is an effective way to improve device performance, the exact reason for improvement in performance is not elucidated. Herein, the role of an Al2O3 interlayer sandwiched between Al metal electrodes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2021-03, Vol.218 (6), p.n/a
Hauptverfasser: Kim, Tae Hyeon, Park, Woojin, Oh, Seyoung, Kim, So-Young, Yamada, Naohito, Kobayashi, Hikaru, Jang, Hye Yeon, Nam, Jae Hyeon, Habazaki, Hiroki, Lee, Byoung Hun, Cho, Byungjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 218
creator Kim, Tae Hyeon
Park, Woojin
Oh, Seyoung
Kim, So-Young
Yamada, Naohito
Kobayashi, Hikaru
Jang, Hye Yeon
Nam, Jae Hyeon
Habazaki, Hiroki
Lee, Byoung Hun
Cho, Byungjin
description Although insertion of a thin insulating layer between metal electrodes and a semiconducting channel is an effective way to improve device performance, the exact reason for improvement in performance is not elucidated. Herein, the role of an Al2O3 interlayer sandwiched between Al metal electrodes and an amorphous indium–gallium–zinc–oxide semiconducting channel is systematically investigated. The Al2O3 interlayer results in not only a good transistor performance with increased on current but also improved gate bias stress stability. The improvement is primarily attributed to a doping effect and mitigation of interface defects. Energy‐band diagrams, experimentally obtained from temperature‐variable electrical characterization and electrostatic force microscopy, validate the channel doping effect, which increase the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. A comprehensive study on the influence of various processing parameters, including Al2O3 thickness, post‐annealing treatment conditions, and types of electrodes, on the transistor device is also performed. This approach guides the practical implementation of stable sol–gel oxide‐based thin‐film transistors and promotes integrated circuitry applications. An IGZO transistor with Al2O3 interlayer demonstrats not only increase on current but also improves gate bias stress stability. Energy‐band diagrams validate the channel doping effect, which increases the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. Furthermore, comprehensive study on the influence of various processing parameters is also performed.
doi_str_mv 10.1002/pssa.202000621
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2501882662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501882662</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2331-8154906c4b3e3c7ae4b1153aa1bc103a1a1619811f2237429824fe40955ce9d43</originalsourceid><addsrcrecordid>eNo9kMFOAjEYhBujiYhePTfxvPj_bbdsj4QokpBgBC5emrJ0taTsru0icvMdfEOfxCUYTjOTTGaSj5BbhB4CsPs6RtNjwABAMjwjHcwkSyRHdX7yAJfkKsY1gEhFHztksSg_rfOufKPNu6Uvlbe0KujAsymn47KxwZu9DdSVbVq57eb3-2dkvD-6V1fmrUy_3MrSeTBldLGpQrwmF4Xx0d78a5csHh_mw6dkMh2Nh4NJUjPOMckwFQpkLpbc8rxvrFgiptwYXOYI3KBBiSpDLBjjfcFUxkRhBag0za1aCd4ld8fdOlQfWxsbva62oWwvNUsBs4xJydqWOrZ2ztu9roPbmLDXCPrATR-46RM3_TybDU6J_wGXW2Ul</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501882662</pqid></control><display><type>article</type><title>Unveiling the Role of Al2O3 Interlayer in Indium–Gallium–Zinc–Oxide Transistors</title><source>Access via Wiley Online Library</source><creator>Kim, Tae Hyeon ; Park, Woojin ; Oh, Seyoung ; Kim, So-Young ; Yamada, Naohito ; Kobayashi, Hikaru ; Jang, Hye Yeon ; Nam, Jae Hyeon ; Habazaki, Hiroki ; Lee, Byoung Hun ; Cho, Byungjin</creator><creatorcontrib>Kim, Tae Hyeon ; Park, Woojin ; Oh, Seyoung ; Kim, So-Young ; Yamada, Naohito ; Kobayashi, Hikaru ; Jang, Hye Yeon ; Nam, Jae Hyeon ; Habazaki, Hiroki ; Lee, Byoung Hun ; Cho, Byungjin</creatorcontrib><description>Although insertion of a thin insulating layer between metal electrodes and a semiconducting channel is an effective way to improve device performance, the exact reason for improvement in performance is not elucidated. Herein, the role of an Al2O3 interlayer sandwiched between Al metal electrodes and an amorphous indium–gallium–zinc–oxide semiconducting channel is systematically investigated. The Al2O3 interlayer results in not only a good transistor performance with increased on current but also improved gate bias stress stability. The improvement is primarily attributed to a doping effect and mitigation of interface defects. Energy‐band diagrams, experimentally obtained from temperature‐variable electrical characterization and electrostatic force microscopy, validate the channel doping effect, which increase the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. A comprehensive study on the influence of various processing parameters, including Al2O3 thickness, post‐annealing treatment conditions, and types of electrodes, on the transistor device is also performed. This approach guides the practical implementation of stable sol–gel oxide‐based thin‐film transistors and promotes integrated circuitry applications. An IGZO transistor with Al2O3 interlayer demonstrats not only increase on current but also improves gate bias stress stability. Energy‐band diagrams validate the channel doping effect, which increases the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. Furthermore, comprehensive study on the influence of various processing parameters is also performed.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202000621</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Al2O3 interlayers ; Aluminum oxide ; barrier height ; Circuits ; contact potential difference ; Current carriers ; Doping ; Electrical properties ; Electrodes ; Fermi-level alignment ; Gallium ; Indium ; indium–gallium–zinc–oxide ; Interlayers ; Process parameters ; Semiconductor devices ; Sol-gel processes ; Transistors ; Zinc</subject><ispartof>Physica status solidi. A, Applications and materials science, 2021-03, Vol.218 (6), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3885-8139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202000621$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202000621$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kim, Tae Hyeon</creatorcontrib><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Oh, Seyoung</creatorcontrib><creatorcontrib>Kim, So-Young</creatorcontrib><creatorcontrib>Yamada, Naohito</creatorcontrib><creatorcontrib>Kobayashi, Hikaru</creatorcontrib><creatorcontrib>Jang, Hye Yeon</creatorcontrib><creatorcontrib>Nam, Jae Hyeon</creatorcontrib><creatorcontrib>Habazaki, Hiroki</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><creatorcontrib>Cho, Byungjin</creatorcontrib><title>Unveiling the Role of Al2O3 Interlayer in Indium–Gallium–Zinc–Oxide Transistors</title><title>Physica status solidi. A, Applications and materials science</title><description>Although insertion of a thin insulating layer between metal electrodes and a semiconducting channel is an effective way to improve device performance, the exact reason for improvement in performance is not elucidated. Herein, the role of an Al2O3 interlayer sandwiched between Al metal electrodes and an amorphous indium–gallium–zinc–oxide semiconducting channel is systematically investigated. The Al2O3 interlayer results in not only a good transistor performance with increased on current but also improved gate bias stress stability. The improvement is primarily attributed to a doping effect and mitigation of interface defects. Energy‐band diagrams, experimentally obtained from temperature‐variable electrical characterization and electrostatic force microscopy, validate the channel doping effect, which increase the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. A comprehensive study on the influence of various processing parameters, including Al2O3 thickness, post‐annealing treatment conditions, and types of electrodes, on the transistor device is also performed. This approach guides the practical implementation of stable sol–gel oxide‐based thin‐film transistors and promotes integrated circuitry applications. An IGZO transistor with Al2O3 interlayer demonstrats not only increase on current but also improves gate bias stress stability. Energy‐band diagrams validate the channel doping effect, which increases the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. Furthermore, comprehensive study on the influence of various processing parameters is also performed.</description><subject>Al2O3 interlayers</subject><subject>Aluminum oxide</subject><subject>barrier height</subject><subject>Circuits</subject><subject>contact potential difference</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Electrical properties</subject><subject>Electrodes</subject><subject>Fermi-level alignment</subject><subject>Gallium</subject><subject>Indium</subject><subject>indium–gallium–zinc–oxide</subject><subject>Interlayers</subject><subject>Process parameters</subject><subject>Semiconductor devices</subject><subject>Sol-gel processes</subject><subject>Transistors</subject><subject>Zinc</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEYhBujiYhePTfxvPj_bbdsj4QokpBgBC5emrJ0taTsru0icvMdfEOfxCUYTjOTTGaSj5BbhB4CsPs6RtNjwABAMjwjHcwkSyRHdX7yAJfkKsY1gEhFHztksSg_rfOufKPNu6Uvlbe0KujAsymn47KxwZu9DdSVbVq57eb3-2dkvD-6V1fmrUy_3MrSeTBldLGpQrwmF4Xx0d78a5csHh_mw6dkMh2Nh4NJUjPOMckwFQpkLpbc8rxvrFgiptwYXOYI3KBBiSpDLBjjfcFUxkRhBag0za1aCd4ld8fdOlQfWxsbva62oWwvNUsBs4xJydqWOrZ2ztu9roPbmLDXCPrATR-46RM3_TybDU6J_wGXW2Ul</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Kim, Tae Hyeon</creator><creator>Park, Woojin</creator><creator>Oh, Seyoung</creator><creator>Kim, So-Young</creator><creator>Yamada, Naohito</creator><creator>Kobayashi, Hikaru</creator><creator>Jang, Hye Yeon</creator><creator>Nam, Jae Hyeon</creator><creator>Habazaki, Hiroki</creator><creator>Lee, Byoung Hun</creator><creator>Cho, Byungjin</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3885-8139</orcidid></search><sort><creationdate>202103</creationdate><title>Unveiling the Role of Al2O3 Interlayer in Indium–Gallium–Zinc–Oxide Transistors</title><author>Kim, Tae Hyeon ; Park, Woojin ; Oh, Seyoung ; Kim, So-Young ; Yamada, Naohito ; Kobayashi, Hikaru ; Jang, Hye Yeon ; Nam, Jae Hyeon ; Habazaki, Hiroki ; Lee, Byoung Hun ; Cho, Byungjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2331-8154906c4b3e3c7ae4b1153aa1bc103a1a1619811f2237429824fe40955ce9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Al2O3 interlayers</topic><topic>Aluminum oxide</topic><topic>barrier height</topic><topic>Circuits</topic><topic>contact potential difference</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Electrical properties</topic><topic>Electrodes</topic><topic>Fermi-level alignment</topic><topic>Gallium</topic><topic>Indium</topic><topic>indium–gallium–zinc–oxide</topic><topic>Interlayers</topic><topic>Process parameters</topic><topic>Semiconductor devices</topic><topic>Sol-gel processes</topic><topic>Transistors</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Hyeon</creatorcontrib><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Oh, Seyoung</creatorcontrib><creatorcontrib>Kim, So-Young</creatorcontrib><creatorcontrib>Yamada, Naohito</creatorcontrib><creatorcontrib>Kobayashi, Hikaru</creatorcontrib><creatorcontrib>Jang, Hye Yeon</creatorcontrib><creatorcontrib>Nam, Jae Hyeon</creatorcontrib><creatorcontrib>Habazaki, Hiroki</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><creatorcontrib>Cho, Byungjin</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Hyeon</au><au>Park, Woojin</au><au>Oh, Seyoung</au><au>Kim, So-Young</au><au>Yamada, Naohito</au><au>Kobayashi, Hikaru</au><au>Jang, Hye Yeon</au><au>Nam, Jae Hyeon</au><au>Habazaki, Hiroki</au><au>Lee, Byoung Hun</au><au>Cho, Byungjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the Role of Al2O3 Interlayer in Indium–Gallium–Zinc–Oxide Transistors</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2021-03</date><risdate>2021</risdate><volume>218</volume><issue>6</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Although insertion of a thin insulating layer between metal electrodes and a semiconducting channel is an effective way to improve device performance, the exact reason for improvement in performance is not elucidated. Herein, the role of an Al2O3 interlayer sandwiched between Al metal electrodes and an amorphous indium–gallium–zinc–oxide semiconducting channel is systematically investigated. The Al2O3 interlayer results in not only a good transistor performance with increased on current but also improved gate bias stress stability. The improvement is primarily attributed to a doping effect and mitigation of interface defects. Energy‐band diagrams, experimentally obtained from temperature‐variable electrical characterization and electrostatic force microscopy, validate the channel doping effect, which increase the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. A comprehensive study on the influence of various processing parameters, including Al2O3 thickness, post‐annealing treatment conditions, and types of electrodes, on the transistor device is also performed. This approach guides the practical implementation of stable sol–gel oxide‐based thin‐film transistors and promotes integrated circuitry applications. An IGZO transistor with Al2O3 interlayer demonstrats not only increase on current but also improves gate bias stress stability. Energy‐band diagrams validate the channel doping effect, which increases the tunneling probability of the electron charge carriers via a reduction of the Schottky barrier width. Furthermore, comprehensive study on the influence of various processing parameters is also performed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202000621</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3885-8139</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2021-03, Vol.218 (6), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2501882662
source Access via Wiley Online Library
subjects Al2O3 interlayers
Aluminum oxide
barrier height
Circuits
contact potential difference
Current carriers
Doping
Electrical properties
Electrodes
Fermi-level alignment
Gallium
Indium
indium–gallium–zinc–oxide
Interlayers
Process parameters
Semiconductor devices
Sol-gel processes
Transistors
Zinc
title Unveiling the Role of Al2O3 Interlayer in Indium–Gallium–Zinc–Oxide Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20Role%20of%20Al2O3%20Interlayer%20in%20Indium%E2%80%93Gallium%E2%80%93Zinc%E2%80%93Oxide%20Transistors&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Kim,%20Tae%20Hyeon&rft.date=2021-03&rft.volume=218&rft.issue=6&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202000621&rft_dat=%3Cproquest_wiley%3E2501882662%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501882662&rft_id=info:pmid/&rfr_iscdi=true