Factors influencing estimates of HIV-1 infection timing using BEAST

While large datasets of HIV-1 sequences are increasingly being generated, many studies rely on a single gene or fragment of the genome and few comparative studies across genes have been done. We performed genome-based and gene-specific Bayesian phylogenetic analyses to investigate how certain factor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-02, Vol.17 (2), p.e1008537-e1008537, Article 1008537
Hauptverfasser: Dearlove, Bethany, Tovanabutra, Sodsai, Owen, Christopher L., Lewitus, Eric, Li, Yifan, Sanders-Buell, Eric, Bose, Meera, O'sullivan, Anne-Marie, Kijak, Gustavo, Miller, Shana, Poltavee, Kultida, Lee, Jenica, Bonar, Lydia, Harbolick, Elizabeth, Ahani, Bahar, Pham, Phuc, Kibuuka, Hannah, Maganga, Lucas, Nitayaphan, Sorachai, Sawe, Fred K., Kim, Jerome H., Eller, Leigh Anne, Vasan, Sandhya, Gramzinski, Robert, Michael, Nelson L., Robb, Merlin L., Rolland, Morgane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While large datasets of HIV-1 sequences are increasingly being generated, many studies rely on a single gene or fragment of the genome and few comparative studies across genes have been done. We performed genome-based and gene-specific Bayesian phylogenetic analyses to investigate how certain factors impact estimates of the infection dates in an acute HIV-1 infection cohort, RV217. In this cohort, HIV-1 diagnosis corresponded to the first RNA positive test and occurred a median of four days after the last negative test, allowing us to compare timing estimates using BEAST to a narrow window of infection. We analyzed HIV-1 sequences sampled one week, one month and six months after HIV-1 diagnosis in 39 individuals. We found that shared diversity and temporal signal was limited in acute infection, and insufficient to allow timing inferences in the shortest HIV-1 genes, thus dated phylogenies were primarily analyzed for env, gag, pol and near full-length genomes. There was no one best fitting model across participants and genes, though relaxed molecular clocks (73% of best fitting models) and the Bayesian skyline (49%) tended to be favored. For infections with single founders, the infection date was estimated to be around one week pre-diagnosis for env (IQR: 3-9 days) and gag (IQR: 5-9 days), whilst the genome placed it at a median of 10 days (IQR: 4-19). Multiply-founded infections proved problematic to date. Our ability to compare timing inferences to precise estimates of HIV-1 infection (within a week) highlights that molecular dating methods can be applied to within-host datasets from early infection. Nonetheless, our results also suggest caution when using uniform clock and population models or short genes with limited information content. Author summary Molecular dating using phylogenetics allows us to estimate the date of an infection from time-stamped within-host sequences alone. There are large datasets of HIV-1 sequences, but genome and gene analyses are not often performed in parallel and rarely with the possibility to compare results against a known narrow window of infection. We showed that all but the longest genes are near-clonal in acute infection, with little information for dating purposes. For infections with single founders, we estimated the eclipse phase-the time between HIV-1 exposure and the first positive diagnostic test-to last between one and two weeks using env, gag, pol and near full-length genomes. This approach could be used to na
ISSN:1553-734X
1553-7358
1553-7358
DOI:10.1371/journal.pcbi.1008537