The 5-dissections of two infinite product expansions

In this paper, we establish 5-dissections of two infinite products and thereby prove that their q -series coefficients vanish for two arithmetic progressions. Moreover, our results also imply that the signs of coefficients of these infinite products are periodic with period 5 from n > 1 .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2021-04, Vol.54 (3), p.475-484
Hauptverfasser: Dou, Donna Q. J., Xiao, Jiejuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 3
container_start_page 475
container_title The Ramanujan journal
container_volume 54
creator Dou, Donna Q. J.
Xiao, Jiejuan
description In this paper, we establish 5-dissections of two infinite products and thereby prove that their q -series coefficients vanish for two arithmetic progressions. Moreover, our results also imply that the signs of coefficients of these infinite products are periodic with period 5 from n > 1 .
doi_str_mv 10.1007/s11139-019-00200-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501877203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501877203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2b86c88e0ef4fc7c1675c61e3e21f8169e00eaec51038bb8c90a71ea2e56920a3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwqcQ7YSdskRzQBQ5rEZZyjLHOgE7Ql6VR4ezKKxI2DZR--37Y-xi4RrhFA3SRElIYD5gIBwMcjNsNKCW4kyOM8Sy14CQZO2VlKOwAoQaoZK9evVFR826REfmi6NhVdKIaxK5o2NG0zUNHHbrv3Q0GfvWvTATlnJ8G9Jbr47XP2fH-3Xiz56unhcXG74l6iGbjY6NprTUChDF55rFXlayRJAoPG2hAAOfIVgtSbjfYGnEJygqraCHByzq6mvfmFjz2lwe66fWzzSSsqQK2UAJkpMVE-dilFCraPzbuLXxbBHuzYyY7NduyPHTvmkJxCKcPtC8W_1f-kvgE72GdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501877203</pqid></control><display><type>article</type><title>The 5-dissections of two infinite product expansions</title><source>SpringerLink Journals</source><creator>Dou, Donna Q. J. ; Xiao, Jiejuan</creator><creatorcontrib>Dou, Donna Q. J. ; Xiao, Jiejuan</creatorcontrib><description>In this paper, we establish 5-dissections of two infinite products and thereby prove that their q -series coefficients vanish for two arithmetic progressions. Moreover, our results also imply that the signs of coefficients of these infinite products are periodic with period 5 from n &gt; 1 .</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-019-00200-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Dissection ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Number Theory ; Progressions ; Series (mathematics)</subject><ispartof>The Ramanujan journal, 2021-04, Vol.54 (3), p.475-484</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2b86c88e0ef4fc7c1675c61e3e21f8169e00eaec51038bb8c90a71ea2e56920a3</citedby><cites>FETCH-LOGICAL-c319t-2b86c88e0ef4fc7c1675c61e3e21f8169e00eaec51038bb8c90a71ea2e56920a3</cites><orcidid>0000-0002-8894-2443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-019-00200-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-019-00200-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Dou, Donna Q. J.</creatorcontrib><creatorcontrib>Xiao, Jiejuan</creatorcontrib><title>The 5-dissections of two infinite product expansions</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In this paper, we establish 5-dissections of two infinite products and thereby prove that their q -series coefficients vanish for two arithmetic progressions. Moreover, our results also imply that the signs of coefficients of these infinite products are periodic with period 5 from n &gt; 1 .</description><subject>Combinatorics</subject><subject>Dissection</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Progressions</subject><subject>Series (mathematics)</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApwqcQ7YSdskRzQBQ5rEZZyjLHOgE7Ql6VR4ezKKxI2DZR--37Y-xi4RrhFA3SRElIYD5gIBwMcjNsNKCW4kyOM8Sy14CQZO2VlKOwAoQaoZK9evVFR826REfmi6NhVdKIaxK5o2NG0zUNHHbrv3Q0GfvWvTATlnJ8G9Jbr47XP2fH-3Xiz56unhcXG74l6iGbjY6NprTUChDF55rFXlayRJAoPG2hAAOfIVgtSbjfYGnEJygqraCHByzq6mvfmFjz2lwe66fWzzSSsqQK2UAJkpMVE-dilFCraPzbuLXxbBHuzYyY7NduyPHTvmkJxCKcPtC8W_1f-kvgE72GdE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Dou, Donna Q. J.</creator><creator>Xiao, Jiejuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8894-2443</orcidid></search><sort><creationdate>20210401</creationdate><title>The 5-dissections of two infinite product expansions</title><author>Dou, Donna Q. J. ; Xiao, Jiejuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2b86c88e0ef4fc7c1675c61e3e21f8169e00eaec51038bb8c90a71ea2e56920a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorics</topic><topic>Dissection</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Progressions</topic><topic>Series (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Donna Q. J.</creatorcontrib><creatorcontrib>Xiao, Jiejuan</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Donna Q. J.</au><au>Xiao, Jiejuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 5-dissections of two infinite product expansions</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>475</spage><epage>484</epage><pages>475-484</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In this paper, we establish 5-dissections of two infinite products and thereby prove that their q -series coefficients vanish for two arithmetic progressions. Moreover, our results also imply that the signs of coefficients of these infinite products are periodic with period 5 from n &gt; 1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-019-00200-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8894-2443</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2021-04, Vol.54 (3), p.475-484
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_2501877203
source SpringerLink Journals
subjects Combinatorics
Dissection
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Progressions
Series (mathematics)
title The 5-dissections of two infinite product expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%205-dissections%20of%20two%20infinite%20product%20expansions&rft.jtitle=The%20Ramanujan%20journal&rft.au=Dou,%20Donna%20Q.%20J.&rft.date=2021-04-01&rft.volume=54&rft.issue=3&rft.spage=475&rft.epage=484&rft.pages=475-484&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-019-00200-w&rft_dat=%3Cproquest_cross%3E2501877203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501877203&rft_id=info:pmid/&rfr_iscdi=true