A continuous method for arsenic removal from groundwater using hybrid biopolymer‐iron‐nanoaggregates: improvement through factorial designs

BACKGROUND Due to a variety of toxicological problems, the presence of As(V) in aquifers is a significant concern. Sorption using chitosan doped with iron nanoaggregates results in a green and cheap methodology for its elimination. RESULTS The hybrid sorbent was characterized by SEM, EDS, TGA, XRD,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2021-04, Vol.96 (4), p.923-929
Hauptverfasser: Batistelli, Marianela, Mora, Bárbara P, Mangiameli, Florencia, Mamana, Nadia, Lopez, Gerardo, Goddio, María F, Bellú, Sebastián, González, Juan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 929
container_issue 4
container_start_page 923
container_title Journal of chemical technology and biotechnology (1986)
container_volume 96
creator Batistelli, Marianela
Mora, Bárbara P
Mangiameli, Florencia
Mamana, Nadia
Lopez, Gerardo
Goddio, María F
Bellú, Sebastián
González, Juan C
description BACKGROUND Due to a variety of toxicological problems, the presence of As(V) in aquifers is a significant concern. Sorption using chitosan doped with iron nanoaggregates results in a green and cheap methodology for its elimination. RESULTS The hybrid sorbent was characterized by SEM, EDS, TGA, XRD, and FTIR spectroscopy. Its stability against pH and time was determined by ICP‐MS, while conventional analytical techniques verified its Fe content. The sum of an individual As(V) removal capacity by chitosan and iron nanoaggregates was smaller than that of the hybrid sorbent, indicating the existence of synergy. CONCLUSION This study demonstrates the great capacity of the hybrid sorbent to eliminate As(V) working with a continuous system (columns). The additional use of a factorial design allows for determining of optimal operating values to optimize two responses. In other words, in this multi‐response system, column service time (tb) was minimized and, at the same time, it maximized the volumes of purified water obtained ([As(V)]
doi_str_mv 10.1002/jctb.6600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501873544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501873544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3690-19eadb3dc83ef2bb29feed5537ae79a6ba755a942939348a26de56eab1d9f2e23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEuWx4A8ssWIRcJzYidlBxVNIbGAdOfEkddXYZZxQdccfwDfyJbiULaurkc6cGV1CTlJ2njLGL-bNUJ9LydgOmaRMFUkeh10yYVyWCReF2CcHIcwZY7LkckI-r2jj3WDd6MdAexhm3tDWI9UYwNmGIvT-XS9oi76nHfrRmZUeAOkYrOvobF2jNbS2fukX6x7w--PLoncxnHZedx1CF_lwSW2_RP8OPbiBDrNo6ma01c3g0Ua_gWA7F47IXqsXAY7_8pC83t68TO-Tp-e7h-nVU9JkUrEkVaBNnZmmzKDldc1VC2CEyAoNhdKy1oUQWuVcZSrLS82lASFB16lRLQeeHZLTrTf-9DZCGKq5H9HFkxUXLC2LTOR5pM62VIM-BIS2WqLtNa6rlFWbvqtN39Wm78hebNmVXcD6f7B6nL5c_278AKdHiWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501873544</pqid></control><display><type>article</type><title>A continuous method for arsenic removal from groundwater using hybrid biopolymer‐iron‐nanoaggregates: improvement through factorial designs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Batistelli, Marianela ; Mora, Bárbara P ; Mangiameli, Florencia ; Mamana, Nadia ; Lopez, Gerardo ; Goddio, María F ; Bellú, Sebastián ; González, Juan C</creator><creatorcontrib>Batistelli, Marianela ; Mora, Bárbara P ; Mangiameli, Florencia ; Mamana, Nadia ; Lopez, Gerardo ; Goddio, María F ; Bellú, Sebastián ; González, Juan C</creatorcontrib><description>BACKGROUND Due to a variety of toxicological problems, the presence of As(V) in aquifers is a significant concern. Sorption using chitosan doped with iron nanoaggregates results in a green and cheap methodology for its elimination. RESULTS The hybrid sorbent was characterized by SEM, EDS, TGA, XRD, and FTIR spectroscopy. Its stability against pH and time was determined by ICP‐MS, while conventional analytical techniques verified its Fe content. The sum of an individual As(V) removal capacity by chitosan and iron nanoaggregates was smaller than that of the hybrid sorbent, indicating the existence of synergy. CONCLUSION This study demonstrates the great capacity of the hybrid sorbent to eliminate As(V) working with a continuous system (columns). The additional use of a factorial design allows for determining of optimal operating values to optimize two responses. In other words, in this multi‐response system, column service time (tb) was minimized and, at the same time, it maximized the volumes of purified water obtained ([As(V)] &lt;0.05 m L−1) using desirability function. © 2020 Society of Chemical Industry (SCI)</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6600</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Aquifers ; Arsenic ; Arsenic removal ; Biopolymers ; Chitosan ; Factorial design ; Groundwater ; improvement ; Iron ; iron‐nanoparticle ; Optimization ; Pollutant removal ; Sorbents ; Water purification</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2021-04, Vol.96 (4), p.923-929</ispartof><rights>2020 Society of Chemical Industry (SCI)</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3690-19eadb3dc83ef2bb29feed5537ae79a6ba755a942939348a26de56eab1d9f2e23</citedby><cites>FETCH-LOGICAL-c3690-19eadb3dc83ef2bb29feed5537ae79a6ba755a942939348a26de56eab1d9f2e23</cites><orcidid>0000-0002-7804-4789 ; 0000-0003-2314-7980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.6600$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.6600$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Batistelli, Marianela</creatorcontrib><creatorcontrib>Mora, Bárbara P</creatorcontrib><creatorcontrib>Mangiameli, Florencia</creatorcontrib><creatorcontrib>Mamana, Nadia</creatorcontrib><creatorcontrib>Lopez, Gerardo</creatorcontrib><creatorcontrib>Goddio, María F</creatorcontrib><creatorcontrib>Bellú, Sebastián</creatorcontrib><creatorcontrib>González, Juan C</creatorcontrib><title>A continuous method for arsenic removal from groundwater using hybrid biopolymer‐iron‐nanoaggregates: improvement through factorial designs</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND Due to a variety of toxicological problems, the presence of As(V) in aquifers is a significant concern. Sorption using chitosan doped with iron nanoaggregates results in a green and cheap methodology for its elimination. RESULTS The hybrid sorbent was characterized by SEM, EDS, TGA, XRD, and FTIR spectroscopy. Its stability against pH and time was determined by ICP‐MS, while conventional analytical techniques verified its Fe content. The sum of an individual As(V) removal capacity by chitosan and iron nanoaggregates was smaller than that of the hybrid sorbent, indicating the existence of synergy. CONCLUSION This study demonstrates the great capacity of the hybrid sorbent to eliminate As(V) working with a continuous system (columns). The additional use of a factorial design allows for determining of optimal operating values to optimize two responses. In other words, in this multi‐response system, column service time (tb) was minimized and, at the same time, it maximized the volumes of purified water obtained ([As(V)] &lt;0.05 m L−1) using desirability function. © 2020 Society of Chemical Industry (SCI)</description><subject>Aquifers</subject><subject>Arsenic</subject><subject>Arsenic removal</subject><subject>Biopolymers</subject><subject>Chitosan</subject><subject>Factorial design</subject><subject>Groundwater</subject><subject>improvement</subject><subject>Iron</subject><subject>iron‐nanoparticle</subject><subject>Optimization</subject><subject>Pollutant removal</subject><subject>Sorbents</subject><subject>Water purification</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEuWx4A8ssWIRcJzYidlBxVNIbGAdOfEkddXYZZxQdccfwDfyJbiULaurkc6cGV1CTlJ2njLGL-bNUJ9LydgOmaRMFUkeh10yYVyWCReF2CcHIcwZY7LkckI-r2jj3WDd6MdAexhm3tDWI9UYwNmGIvT-XS9oi76nHfrRmZUeAOkYrOvobF2jNbS2fukX6x7w--PLoncxnHZedx1CF_lwSW2_RP8OPbiBDrNo6ma01c3g0Ua_gWA7F47IXqsXAY7_8pC83t68TO-Tp-e7h-nVU9JkUrEkVaBNnZmmzKDldc1VC2CEyAoNhdKy1oUQWuVcZSrLS82lASFB16lRLQeeHZLTrTf-9DZCGKq5H9HFkxUXLC2LTOR5pM62VIM-BIS2WqLtNa6rlFWbvqtN39Wm78hebNmVXcD6f7B6nL5c_278AKdHiWw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Batistelli, Marianela</creator><creator>Mora, Bárbara P</creator><creator>Mangiameli, Florencia</creator><creator>Mamana, Nadia</creator><creator>Lopez, Gerardo</creator><creator>Goddio, María F</creator><creator>Bellú, Sebastián</creator><creator>González, Juan C</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7804-4789</orcidid><orcidid>https://orcid.org/0000-0003-2314-7980</orcidid></search><sort><creationdate>202104</creationdate><title>A continuous method for arsenic removal from groundwater using hybrid biopolymer‐iron‐nanoaggregates: improvement through factorial designs</title><author>Batistelli, Marianela ; Mora, Bárbara P ; Mangiameli, Florencia ; Mamana, Nadia ; Lopez, Gerardo ; Goddio, María F ; Bellú, Sebastián ; González, Juan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3690-19eadb3dc83ef2bb29feed5537ae79a6ba755a942939348a26de56eab1d9f2e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquifers</topic><topic>Arsenic</topic><topic>Arsenic removal</topic><topic>Biopolymers</topic><topic>Chitosan</topic><topic>Factorial design</topic><topic>Groundwater</topic><topic>improvement</topic><topic>Iron</topic><topic>iron‐nanoparticle</topic><topic>Optimization</topic><topic>Pollutant removal</topic><topic>Sorbents</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batistelli, Marianela</creatorcontrib><creatorcontrib>Mora, Bárbara P</creatorcontrib><creatorcontrib>Mangiameli, Florencia</creatorcontrib><creatorcontrib>Mamana, Nadia</creatorcontrib><creatorcontrib>Lopez, Gerardo</creatorcontrib><creatorcontrib>Goddio, María F</creatorcontrib><creatorcontrib>Bellú, Sebastián</creatorcontrib><creatorcontrib>González, Juan C</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batistelli, Marianela</au><au>Mora, Bárbara P</au><au>Mangiameli, Florencia</au><au>Mamana, Nadia</au><au>Lopez, Gerardo</au><au>Goddio, María F</au><au>Bellú, Sebastián</au><au>González, Juan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A continuous method for arsenic removal from groundwater using hybrid biopolymer‐iron‐nanoaggregates: improvement through factorial designs</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>96</volume><issue>4</issue><spage>923</spage><epage>929</epage><pages>923-929</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND Due to a variety of toxicological problems, the presence of As(V) in aquifers is a significant concern. Sorption using chitosan doped with iron nanoaggregates results in a green and cheap methodology for its elimination. RESULTS The hybrid sorbent was characterized by SEM, EDS, TGA, XRD, and FTIR spectroscopy. Its stability against pH and time was determined by ICP‐MS, while conventional analytical techniques verified its Fe content. The sum of an individual As(V) removal capacity by chitosan and iron nanoaggregates was smaller than that of the hybrid sorbent, indicating the existence of synergy. CONCLUSION This study demonstrates the great capacity of the hybrid sorbent to eliminate As(V) working with a continuous system (columns). The additional use of a factorial design allows for determining of optimal operating values to optimize two responses. In other words, in this multi‐response system, column service time (tb) was minimized and, at the same time, it maximized the volumes of purified water obtained ([As(V)] &lt;0.05 m L−1) using desirability function. © 2020 Society of Chemical Industry (SCI)</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.6600</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7804-4789</orcidid><orcidid>https://orcid.org/0000-0003-2314-7980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2021-04, Vol.96 (4), p.923-929
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2501873544
source Wiley Online Library Journals Frontfile Complete
subjects Aquifers
Arsenic
Arsenic removal
Biopolymers
Chitosan
Factorial design
Groundwater
improvement
Iron
iron‐nanoparticle
Optimization
Pollutant removal
Sorbents
Water purification
title A continuous method for arsenic removal from groundwater using hybrid biopolymer‐iron‐nanoaggregates: improvement through factorial designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20continuous%20method%20for%20arsenic%20removal%20from%20groundwater%20using%20hybrid%20biopolymer%E2%80%90iron%E2%80%90nanoaggregates:%20improvement%20through%20factorial%20designs&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Batistelli,%20Marianela&rft.date=2021-04&rft.volume=96&rft.issue=4&rft.spage=923&rft.epage=929&rft.pages=923-929&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6600&rft_dat=%3Cproquest_cross%3E2501873544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501873544&rft_id=info:pmid/&rfr_iscdi=true