Intelligent optimization of bioleaching process for waste lithium‐ion batteries: An application of support vector regression approach

Summary Recovery of toxic and vital metal from spent Li‐ion batteries is a vital problem in the recycling industry. The recycling processes such as bioleaching are much simpler and environment friendly but lack the required efficiency for metal recovery to prove the commercial feasibility of the mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2021-03, Vol.45 (4), p.6152-6162
Hauptverfasser: Ruhatiya, Chaitanya, Gandra, Ruthvik, Kondaiah, P, Manivas, Kura, Samhith, Aditya, Gao, Liang, Lam, Jasmine Siu Lee, Garg, Akhil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6162
container_issue 4
container_start_page 6152
container_title International journal of energy research
container_volume 45
creator Ruhatiya, Chaitanya
Gandra, Ruthvik
Kondaiah, P
Manivas, Kura
Samhith, Aditya
Gao, Liang
Lam, Jasmine Siu Lee
Garg, Akhil
description Summary Recovery of toxic and vital metal from spent Li‐ion batteries is a vital problem in the recycling industry. The recycling processes such as bioleaching are much simpler and environment friendly but lack the required efficiency for metal recovery to prove the commercial feasibility of the model. This work focuses on increasing the efficiency of the bioleaching process by targeting its intermediate processes for maximum vital metal recovery. The intermediate process of biomass generation from Aspergillus niger fungus is targeted. The data from experimental design is modelled using support vector regression with v‐fold cross‐validation. The bioleaching process is optimized such that maximum biomass concentration is obtained for efficient and commercially viable metal recovery. The results are divided into four sections, each addressing an important issue of the recycling process mechanism. The generated model is found to have good stability and accurate process mechanism predictability. Global sensitivity and interaction analysis is employed for efficient weighted optimization. The model generated trends and optimization results are verified through the profiling curve as well as past literature experimental data. This work reports the maximum biomass concentration of 25 g/L. The model employed is stable and efficient, reaching a stable optimized value under 300 iterations. The optimized input parameters values obtained are 144.39 g/L, 1.29% v/v, 6.70, 1513.05 ppm, 4989.79 ppm, 2094.22 ppm, 347.57 ppm and 2.37 for sucrose concentration, inoculum size, initial pH, oxalic acid, gluconic acid, malic acid, citric acid concentration and final pH, respectively.
doi_str_mv 10.1002/er.6238
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501869075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501869075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3808-6953a482d3893904e139d8f056c4e4e30644617a5a8aebabd0cb68cbc63555ab3</originalsourceid><addsrcrecordid>eNp10EFLwzAYBuAgCs4p_oWABw_SmTRtlnobY-pgIIjCbiXNvm4ZXVOT1DFP3rz6G_0lpk68ecrhe_K-8CJ0TsmAEhJfgx3wmIkD1KMkyyJKk_kh6hHGWZSR4fwYnTi3JiTc6LCHPqa1h6rSS6g9No3XG_0mvTY1NiUutKlAqpWul7ixRoFzuDQWb6XzgCvtV7rdfL1_dryQ3oPV4G7wqMayaSqt_oJc2zTGevwKyof_FpY2ZHXHAK0JFafoqJSVg7Pft4-ebydP4_to9nA3HY9mkWKCiIhnKZOJiBdMZCwjCVCWLURJUq4SSIARniScDmUqhYRCFguiCi5UoThL01QWrI8u9rmh9qUF5_O1aW0dKvM4JVTwsFEa1OVeKWucs1DmjdUbaXc5JXm3cg4271YO8movt7qC3X8snzz-6G9XC4Ej</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501869075</pqid></control><display><type>article</type><title>Intelligent optimization of bioleaching process for waste lithium‐ion batteries: An application of support vector regression approach</title><source>Access via Wiley Online Library</source><creator>Ruhatiya, Chaitanya ; Gandra, Ruthvik ; Kondaiah, P ; Manivas, Kura ; Samhith, Aditya ; Gao, Liang ; Lam, Jasmine Siu Lee ; Garg, Akhil</creator><creatorcontrib>Ruhatiya, Chaitanya ; Gandra, Ruthvik ; Kondaiah, P ; Manivas, Kura ; Samhith, Aditya ; Gao, Liang ; Lam, Jasmine Siu Lee ; Garg, Akhil</creatorcontrib><description>Summary Recovery of toxic and vital metal from spent Li‐ion batteries is a vital problem in the recycling industry. The recycling processes such as bioleaching are much simpler and environment friendly but lack the required efficiency for metal recovery to prove the commercial feasibility of the model. This work focuses on increasing the efficiency of the bioleaching process by targeting its intermediate processes for maximum vital metal recovery. The intermediate process of biomass generation from Aspergillus niger fungus is targeted. The data from experimental design is modelled using support vector regression with v‐fold cross‐validation. The bioleaching process is optimized such that maximum biomass concentration is obtained for efficient and commercially viable metal recovery. The results are divided into four sections, each addressing an important issue of the recycling process mechanism. The generated model is found to have good stability and accurate process mechanism predictability. Global sensitivity and interaction analysis is employed for efficient weighted optimization. The model generated trends and optimization results are verified through the profiling curve as well as past literature experimental data. This work reports the maximum biomass concentration of 25 g/L. The model employed is stable and efficient, reaching a stable optimized value under 300 iterations. The optimized input parameters values obtained are 144.39 g/L, 1.29% v/v, 6.70, 1513.05 ppm, 4989.79 ppm, 2094.22 ppm, 347.57 ppm and 2.37 for sucrose concentration, inoculum size, initial pH, oxalic acid, gluconic acid, malic acid, citric acid concentration and final pH, respectively.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.6238</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Acids ; Bacterial leaching ; Batteries ; bioleaching ; Biomass ; Citric acid ; Design of experiments ; Experimental design ; Feasibility studies ; Fungi ; Gluconic acid ; Inoculum ; intelligent optimization ; Leaching ; Lithium ; Lithium-ion batteries ; Malic acid ; Materials recovery ; Metals ; Optimization ; Oxalic acid ; pH effects ; Recovery ; Recycling ; Regression analysis ; spent batteries ; Stability ; Stability analysis ; Sucrose ; Sugar ; Support vector machines ; support vector regression ; waste management</subject><ispartof>International journal of energy research, 2021-03, Vol.45 (4), p.6152-6162</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3808-6953a482d3893904e139d8f056c4e4e30644617a5a8aebabd0cb68cbc63555ab3</citedby><cites>FETCH-LOGICAL-c3808-6953a482d3893904e139d8f056c4e4e30644617a5a8aebabd0cb68cbc63555ab3</cites><orcidid>0000-0003-3511-3577 ; 0000-0002-1485-0722 ; 0000-0002-4825-1226 ; 0000-0001-7920-2665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.6238$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.6238$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ruhatiya, Chaitanya</creatorcontrib><creatorcontrib>Gandra, Ruthvik</creatorcontrib><creatorcontrib>Kondaiah, P</creatorcontrib><creatorcontrib>Manivas, Kura</creatorcontrib><creatorcontrib>Samhith, Aditya</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Lam, Jasmine Siu Lee</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><title>Intelligent optimization of bioleaching process for waste lithium‐ion batteries: An application of support vector regression approach</title><title>International journal of energy research</title><description>Summary Recovery of toxic and vital metal from spent Li‐ion batteries is a vital problem in the recycling industry. The recycling processes such as bioleaching are much simpler and environment friendly but lack the required efficiency for metal recovery to prove the commercial feasibility of the model. This work focuses on increasing the efficiency of the bioleaching process by targeting its intermediate processes for maximum vital metal recovery. The intermediate process of biomass generation from Aspergillus niger fungus is targeted. The data from experimental design is modelled using support vector regression with v‐fold cross‐validation. The bioleaching process is optimized such that maximum biomass concentration is obtained for efficient and commercially viable metal recovery. The results are divided into four sections, each addressing an important issue of the recycling process mechanism. The generated model is found to have good stability and accurate process mechanism predictability. Global sensitivity and interaction analysis is employed for efficient weighted optimization. The model generated trends and optimization results are verified through the profiling curve as well as past literature experimental data. This work reports the maximum biomass concentration of 25 g/L. The model employed is stable and efficient, reaching a stable optimized value under 300 iterations. The optimized input parameters values obtained are 144.39 g/L, 1.29% v/v, 6.70, 1513.05 ppm, 4989.79 ppm, 2094.22 ppm, 347.57 ppm and 2.37 for sucrose concentration, inoculum size, initial pH, oxalic acid, gluconic acid, malic acid, citric acid concentration and final pH, respectively.</description><subject>Acids</subject><subject>Bacterial leaching</subject><subject>Batteries</subject><subject>bioleaching</subject><subject>Biomass</subject><subject>Citric acid</subject><subject>Design of experiments</subject><subject>Experimental design</subject><subject>Feasibility studies</subject><subject>Fungi</subject><subject>Gluconic acid</subject><subject>Inoculum</subject><subject>intelligent optimization</subject><subject>Leaching</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Malic acid</subject><subject>Materials recovery</subject><subject>Metals</subject><subject>Optimization</subject><subject>Oxalic acid</subject><subject>pH effects</subject><subject>Recovery</subject><subject>Recycling</subject><subject>Regression analysis</subject><subject>spent batteries</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>waste management</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAYBuAgCs4p_oWABw_SmTRtlnobY-pgIIjCbiXNvm4ZXVOT1DFP3rz6G_0lpk68ecrhe_K-8CJ0TsmAEhJfgx3wmIkD1KMkyyJKk_kh6hHGWZSR4fwYnTi3JiTc6LCHPqa1h6rSS6g9No3XG_0mvTY1NiUutKlAqpWul7ixRoFzuDQWb6XzgCvtV7rdfL1_dryQ3oPV4G7wqMayaSqt_oJc2zTGevwKyof_FpY2ZHXHAK0JFafoqJSVg7Pft4-ebydP4_to9nA3HY9mkWKCiIhnKZOJiBdMZCwjCVCWLURJUq4SSIARniScDmUqhYRCFguiCi5UoThL01QWrI8u9rmh9qUF5_O1aW0dKvM4JVTwsFEa1OVeKWucs1DmjdUbaXc5JXm3cg4271YO8movt7qC3X8snzz-6G9XC4Ej</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Ruhatiya, Chaitanya</creator><creator>Gandra, Ruthvik</creator><creator>Kondaiah, P</creator><creator>Manivas, Kura</creator><creator>Samhith, Aditya</creator><creator>Gao, Liang</creator><creator>Lam, Jasmine Siu Lee</creator><creator>Garg, Akhil</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3511-3577</orcidid><orcidid>https://orcid.org/0000-0002-1485-0722</orcidid><orcidid>https://orcid.org/0000-0002-4825-1226</orcidid><orcidid>https://orcid.org/0000-0001-7920-2665</orcidid></search><sort><creationdate>20210325</creationdate><title>Intelligent optimization of bioleaching process for waste lithium‐ion batteries: An application of support vector regression approach</title><author>Ruhatiya, Chaitanya ; Gandra, Ruthvik ; Kondaiah, P ; Manivas, Kura ; Samhith, Aditya ; Gao, Liang ; Lam, Jasmine Siu Lee ; Garg, Akhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3808-6953a482d3893904e139d8f056c4e4e30644617a5a8aebabd0cb68cbc63555ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Bacterial leaching</topic><topic>Batteries</topic><topic>bioleaching</topic><topic>Biomass</topic><topic>Citric acid</topic><topic>Design of experiments</topic><topic>Experimental design</topic><topic>Feasibility studies</topic><topic>Fungi</topic><topic>Gluconic acid</topic><topic>Inoculum</topic><topic>intelligent optimization</topic><topic>Leaching</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Malic acid</topic><topic>Materials recovery</topic><topic>Metals</topic><topic>Optimization</topic><topic>Oxalic acid</topic><topic>pH effects</topic><topic>Recovery</topic><topic>Recycling</topic><topic>Regression analysis</topic><topic>spent batteries</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruhatiya, Chaitanya</creatorcontrib><creatorcontrib>Gandra, Ruthvik</creatorcontrib><creatorcontrib>Kondaiah, P</creatorcontrib><creatorcontrib>Manivas, Kura</creatorcontrib><creatorcontrib>Samhith, Aditya</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Lam, Jasmine Siu Lee</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruhatiya, Chaitanya</au><au>Gandra, Ruthvik</au><au>Kondaiah, P</au><au>Manivas, Kura</au><au>Samhith, Aditya</au><au>Gao, Liang</au><au>Lam, Jasmine Siu Lee</au><au>Garg, Akhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent optimization of bioleaching process for waste lithium‐ion batteries: An application of support vector regression approach</atitle><jtitle>International journal of energy research</jtitle><date>2021-03-25</date><risdate>2021</risdate><volume>45</volume><issue>4</issue><spage>6152</spage><epage>6162</epage><pages>6152-6162</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary Recovery of toxic and vital metal from spent Li‐ion batteries is a vital problem in the recycling industry. The recycling processes such as bioleaching are much simpler and environment friendly but lack the required efficiency for metal recovery to prove the commercial feasibility of the model. This work focuses on increasing the efficiency of the bioleaching process by targeting its intermediate processes for maximum vital metal recovery. The intermediate process of biomass generation from Aspergillus niger fungus is targeted. The data from experimental design is modelled using support vector regression with v‐fold cross‐validation. The bioleaching process is optimized such that maximum biomass concentration is obtained for efficient and commercially viable metal recovery. The results are divided into four sections, each addressing an important issue of the recycling process mechanism. The generated model is found to have good stability and accurate process mechanism predictability. Global sensitivity and interaction analysis is employed for efficient weighted optimization. The model generated trends and optimization results are verified through the profiling curve as well as past literature experimental data. This work reports the maximum biomass concentration of 25 g/L. The model employed is stable and efficient, reaching a stable optimized value under 300 iterations. The optimized input parameters values obtained are 144.39 g/L, 1.29% v/v, 6.70, 1513.05 ppm, 4989.79 ppm, 2094.22 ppm, 347.57 ppm and 2.37 for sucrose concentration, inoculum size, initial pH, oxalic acid, gluconic acid, malic acid, citric acid concentration and final pH, respectively.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.6238</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3511-3577</orcidid><orcidid>https://orcid.org/0000-0002-1485-0722</orcidid><orcidid>https://orcid.org/0000-0002-4825-1226</orcidid><orcidid>https://orcid.org/0000-0001-7920-2665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2021-03, Vol.45 (4), p.6152-6162
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2501869075
source Access via Wiley Online Library
subjects Acids
Bacterial leaching
Batteries
bioleaching
Biomass
Citric acid
Design of experiments
Experimental design
Feasibility studies
Fungi
Gluconic acid
Inoculum
intelligent optimization
Leaching
Lithium
Lithium-ion batteries
Malic acid
Materials recovery
Metals
Optimization
Oxalic acid
pH effects
Recovery
Recycling
Regression analysis
spent batteries
Stability
Stability analysis
Sucrose
Sugar
Support vector machines
support vector regression
waste management
title Intelligent optimization of bioleaching process for waste lithium‐ion batteries: An application of support vector regression approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20optimization%20of%20bioleaching%20process%20for%20waste%20lithium%E2%80%90ion%20batteries:%20An%20application%20of%20support%20vector%20regression%20approach&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Ruhatiya,%20Chaitanya&rft.date=2021-03-25&rft.volume=45&rft.issue=4&rft.spage=6152&rft.epage=6162&rft.pages=6152-6162&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.6238&rft_dat=%3Cproquest_cross%3E2501869075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501869075&rft_id=info:pmid/&rfr_iscdi=true