The importance of trace element analyses in detrital Cr‐spinel provenance studies: An example from the Upper Triassic of the Barents Shelf
Investigations of sandstone provenance often involve U–Pb dating and chemical/mineralogical investigations of detrital minerals that are stable in sediments. As most stable detrital minerals are from felsic–intermediate rocks, investigations of the only mafic–ultramafic mineral considered stable in...
Gespeichert in:
Veröffentlicht in: | Basin research 2021-04, Vol.33 (2), p.1017-1032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1032 |
---|---|
container_issue | 2 |
container_start_page | 1017 |
container_title | Basin research |
container_volume | 33 |
creator | Harstad, Trond Svånå Mørk E., Mai Britt Slagstad, Trond |
description | Investigations of sandstone provenance often involve U–Pb dating and chemical/mineralogical investigations of detrital minerals that are stable in sediments. As most stable detrital minerals are from felsic–intermediate rocks, investigations of the only mafic–ultramafic mineral considered stable in sediments, chromian spinel (Cr‐spinel), can reveal contributions from mafic–ultramafic sources. Cr‐spinel chemical compositions are tied to petrogenesis, making it possible to identify the nature of, and differentiate between, potential sources. Earlier detrital Cr‐spinel studies have focused on major and minor element compositions, however, the advent of laser‐ablation analytical techniques now allow routine mineral trace element analyses. Here, we integrate major, minor and trace element compositions of detrital Cr‐spinel from sandstones with a well‐characterised provenance from the Triassic (Anisian to Early Norian) Snadd and De Geerdalen formations of the Barents Shelf. The analysed Cr‐spinel compositions are depleted in the major element cations Fe3+, Al and Mg and enriched in Cr and Fe2+. Relative to MORB chromite, the minor and trace element data show high concentrations of Zn, Co and Mn, low concentrations of Ni and Ga and variable concentrations of Ti, V and Sc. The major element compositions of the detrital Cr‐spinel are similar to ophiolite‐associated Cr‐spinel, while the trace element compositions indicate a more complex petrogenesis influenced by metamorphic alteration. The compositional variations between sample locations are small, suggesting similar source rocks for the detrital Cr‐spinel throughout the study area. The most likely sources of the Cr‐spinel grains are metamorphosed ophiolite complexes in the Uralian Orogen, in accordance with earlier provenance studies. The novel addition of trace element compositions to detrital Cr‐spinel studies adds significant source‐sensitive information.
Cr‐spinel from the Snadd and De Geerdalen formations are distinctly different from Cr‐spinel of the same depositional age to the east of the Uralian Orogen. Major element compositions of detrital Cr‐spinel in the Carnian Osipai Fm. north Siberia is consistent with Cr‐spinel from a large igneous province, while Snadd and De Geerdalen formation Cr‐spinel indicate a ophiolitic source. The addition of trace element compositional data of the Snadd and De Geerdalen formation Cr‐spinel, help identify a metamorphic alteration history of the detrital grains. |
doi_str_mv | 10.1111/bre.12502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501869071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501869071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-e41407dc6e012ac0d10f5eeba26b230ec7f865e2927aee3e11979f8834cbbe5e3</originalsourceid><addsrcrecordid>eNp1kEtOAzEMhiMEEqWw4AaRWLGYNs50XuxKVR5SJSRoJXZRJuNRU82LJAW64wAsOCMnIXTY4o0t67N_-yfkHNgIfIxzgyPgEeMHZABhHAUcIDkkA5ZFLGAZPB-TE2s3jLE0AhiQz-Uaqa671jjZKKRtSZ2RvsAKa2wclY2sdhYt1Q0t0BntZEVn5vvjy3a6wYp2pn3FZj9s3bbQaK_otKH4LuuuQlqatqbOi6y6Dg1dGi2t1Wov5LvX0ngVS5_WWJWn5KiUlcWzvzwkq5v5cnYXLB5u72fTRaDCkPMAJzBhSaFiZMClYgWwMkLMJY9zHjJUSZnGEfKMJxIxRIAsyco0DScqzzHCcEgu-r3-9pctWic27db4R63w1kEaZywBT132lDKttQZL0RldS7MTwMSv2cKbLfZme3bcs2-6wt3_oLh-nPcTPx10g20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501869071</pqid></control><display><type>article</type><title>The importance of trace element analyses in detrital Cr‐spinel provenance studies: An example from the Upper Triassic of the Barents Shelf</title><source>Access via Wiley Online Library</source><creator>Harstad, Trond Svånå ; Mørk E., Mai Britt ; Slagstad, Trond</creator><creatorcontrib>Harstad, Trond Svånå ; Mørk E., Mai Britt ; Slagstad, Trond</creatorcontrib><description>Investigations of sandstone provenance often involve U–Pb dating and chemical/mineralogical investigations of detrital minerals that are stable in sediments. As most stable detrital minerals are from felsic–intermediate rocks, investigations of the only mafic–ultramafic mineral considered stable in sediments, chromian spinel (Cr‐spinel), can reveal contributions from mafic–ultramafic sources. Cr‐spinel chemical compositions are tied to petrogenesis, making it possible to identify the nature of, and differentiate between, potential sources. Earlier detrital Cr‐spinel studies have focused on major and minor element compositions, however, the advent of laser‐ablation analytical techniques now allow routine mineral trace element analyses. Here, we integrate major, minor and trace element compositions of detrital Cr‐spinel from sandstones with a well‐characterised provenance from the Triassic (Anisian to Early Norian) Snadd and De Geerdalen formations of the Barents Shelf. The analysed Cr‐spinel compositions are depleted in the major element cations Fe3+, Al and Mg and enriched in Cr and Fe2+. Relative to MORB chromite, the minor and trace element data show high concentrations of Zn, Co and Mn, low concentrations of Ni and Ga and variable concentrations of Ti, V and Sc. The major element compositions of the detrital Cr‐spinel are similar to ophiolite‐associated Cr‐spinel, while the trace element compositions indicate a more complex petrogenesis influenced by metamorphic alteration. The compositional variations between sample locations are small, suggesting similar source rocks for the detrital Cr‐spinel throughout the study area. The most likely sources of the Cr‐spinel grains are metamorphosed ophiolite complexes in the Uralian Orogen, in accordance with earlier provenance studies. The novel addition of trace element compositions to detrital Cr‐spinel studies adds significant source‐sensitive information.
Cr‐spinel from the Snadd and De Geerdalen formations are distinctly different from Cr‐spinel of the same depositional age to the east of the Uralian Orogen. Major element compositions of detrital Cr‐spinel in the Carnian Osipai Fm. north Siberia is consistent with Cr‐spinel from a large igneous province, while Snadd and De Geerdalen formation Cr‐spinel indicate a ophiolitic source. The addition of trace element compositional data of the Snadd and De Geerdalen formation Cr‐spinel, help identify a metamorphic alteration history of the detrital grains.</description><identifier>ISSN: 0950-091X</identifier><identifier>EISSN: 1365-2117</identifier><identifier>DOI: 10.1111/bre.12502</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Aluminum ; Analytical methods ; Barents Sea ; Cations ; Chemical composition ; Chromite ; Cr‐spinel ; Cr‐spinel trace element composition ; De Geerdalen Formation ; Iron ; Isotopes ; Laser ablation ; Lasers ; Low concentrations ; Magnesium ; Manganese ; Mathematical analysis ; Minerals ; Nickel ; Ophiolites ; Orogeny ; Petrogenesis ; Provenance ; Radiometric dating ; Rocks ; Sandstone ; Sediment ; Sedimentary rocks ; Sediments ; Snadd Formation ; Spinel ; Tectonics and Sedimentation ; Trace elements ; Triassic ; Zinc</subject><ispartof>Basin research, 2021-04, Vol.33 (2), p.1017-1032</ispartof><rights>2020 The Authors. Basin Research published by International Association of Sedimentologists and European Association of Geoscientists and Engineers and John Wiley & Sons Ltd</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-e41407dc6e012ac0d10f5eeba26b230ec7f865e2927aee3e11979f8834cbbe5e3</citedby><cites>FETCH-LOGICAL-c3322-e41407dc6e012ac0d10f5eeba26b230ec7f865e2927aee3e11979f8834cbbe5e3</cites><orcidid>0000-0002-8059-2426 ; 0000-0003-2313-4602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbre.12502$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbre.12502$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Harstad, Trond Svånå</creatorcontrib><creatorcontrib>Mørk E., Mai Britt</creatorcontrib><creatorcontrib>Slagstad, Trond</creatorcontrib><title>The importance of trace element analyses in detrital Cr‐spinel provenance studies: An example from the Upper Triassic of the Barents Shelf</title><title>Basin research</title><description>Investigations of sandstone provenance often involve U–Pb dating and chemical/mineralogical investigations of detrital minerals that are stable in sediments. As most stable detrital minerals are from felsic–intermediate rocks, investigations of the only mafic–ultramafic mineral considered stable in sediments, chromian spinel (Cr‐spinel), can reveal contributions from mafic–ultramafic sources. Cr‐spinel chemical compositions are tied to petrogenesis, making it possible to identify the nature of, and differentiate between, potential sources. Earlier detrital Cr‐spinel studies have focused on major and minor element compositions, however, the advent of laser‐ablation analytical techniques now allow routine mineral trace element analyses. Here, we integrate major, minor and trace element compositions of detrital Cr‐spinel from sandstones with a well‐characterised provenance from the Triassic (Anisian to Early Norian) Snadd and De Geerdalen formations of the Barents Shelf. The analysed Cr‐spinel compositions are depleted in the major element cations Fe3+, Al and Mg and enriched in Cr and Fe2+. Relative to MORB chromite, the minor and trace element data show high concentrations of Zn, Co and Mn, low concentrations of Ni and Ga and variable concentrations of Ti, V and Sc. The major element compositions of the detrital Cr‐spinel are similar to ophiolite‐associated Cr‐spinel, while the trace element compositions indicate a more complex petrogenesis influenced by metamorphic alteration. The compositional variations between sample locations are small, suggesting similar source rocks for the detrital Cr‐spinel throughout the study area. The most likely sources of the Cr‐spinel grains are metamorphosed ophiolite complexes in the Uralian Orogen, in accordance with earlier provenance studies. The novel addition of trace element compositions to detrital Cr‐spinel studies adds significant source‐sensitive information.
Cr‐spinel from the Snadd and De Geerdalen formations are distinctly different from Cr‐spinel of the same depositional age to the east of the Uralian Orogen. Major element compositions of detrital Cr‐spinel in the Carnian Osipai Fm. north Siberia is consistent with Cr‐spinel from a large igneous province, while Snadd and De Geerdalen formation Cr‐spinel indicate a ophiolitic source. The addition of trace element compositional data of the Snadd and De Geerdalen formation Cr‐spinel, help identify a metamorphic alteration history of the detrital grains.</description><subject>Ablation</subject><subject>Aluminum</subject><subject>Analytical methods</subject><subject>Barents Sea</subject><subject>Cations</subject><subject>Chemical composition</subject><subject>Chromite</subject><subject>Cr‐spinel</subject><subject>Cr‐spinel trace element composition</subject><subject>De Geerdalen Formation</subject><subject>Iron</subject><subject>Isotopes</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Low concentrations</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Minerals</subject><subject>Nickel</subject><subject>Ophiolites</subject><subject>Orogeny</subject><subject>Petrogenesis</subject><subject>Provenance</subject><subject>Radiometric dating</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Sediment</subject><subject>Sedimentary rocks</subject><subject>Sediments</subject><subject>Snadd Formation</subject><subject>Spinel</subject><subject>Tectonics and Sedimentation</subject><subject>Trace elements</subject><subject>Triassic</subject><subject>Zinc</subject><issn>0950-091X</issn><issn>1365-2117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kEtOAzEMhiMEEqWw4AaRWLGYNs50XuxKVR5SJSRoJXZRJuNRU82LJAW64wAsOCMnIXTY4o0t67N_-yfkHNgIfIxzgyPgEeMHZABhHAUcIDkkA5ZFLGAZPB-TE2s3jLE0AhiQz-Uaqa671jjZKKRtSZ2RvsAKa2wclY2sdhYt1Q0t0BntZEVn5vvjy3a6wYp2pn3FZj9s3bbQaK_otKH4LuuuQlqatqbOi6y6Dg1dGi2t1Wov5LvX0ngVS5_WWJWn5KiUlcWzvzwkq5v5cnYXLB5u72fTRaDCkPMAJzBhSaFiZMClYgWwMkLMJY9zHjJUSZnGEfKMJxIxRIAsyco0DScqzzHCcEgu-r3-9pctWic27db4R63w1kEaZywBT132lDKttQZL0RldS7MTwMSv2cKbLfZme3bcs2-6wt3_oLh-nPcTPx10g20</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Harstad, Trond Svånå</creator><creator>Mørk E., Mai Britt</creator><creator>Slagstad, Trond</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-8059-2426</orcidid><orcidid>https://orcid.org/0000-0003-2313-4602</orcidid></search><sort><creationdate>202104</creationdate><title>The importance of trace element analyses in detrital Cr‐spinel provenance studies: An example from the Upper Triassic of the Barents Shelf</title><author>Harstad, Trond Svånå ; Mørk E., Mai Britt ; Slagstad, Trond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-e41407dc6e012ac0d10f5eeba26b230ec7f865e2927aee3e11979f8834cbbe5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Aluminum</topic><topic>Analytical methods</topic><topic>Barents Sea</topic><topic>Cations</topic><topic>Chemical composition</topic><topic>Chromite</topic><topic>Cr‐spinel</topic><topic>Cr‐spinel trace element composition</topic><topic>De Geerdalen Formation</topic><topic>Iron</topic><topic>Isotopes</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Low concentrations</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Minerals</topic><topic>Nickel</topic><topic>Ophiolites</topic><topic>Orogeny</topic><topic>Petrogenesis</topic><topic>Provenance</topic><topic>Radiometric dating</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Sediment</topic><topic>Sedimentary rocks</topic><topic>Sediments</topic><topic>Snadd Formation</topic><topic>Spinel</topic><topic>Tectonics and Sedimentation</topic><topic>Trace elements</topic><topic>Triassic</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harstad, Trond Svånå</creatorcontrib><creatorcontrib>Mørk E., Mai Britt</creatorcontrib><creatorcontrib>Slagstad, Trond</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Basin research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harstad, Trond Svånå</au><au>Mørk E., Mai Britt</au><au>Slagstad, Trond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The importance of trace element analyses in detrital Cr‐spinel provenance studies: An example from the Upper Triassic of the Barents Shelf</atitle><jtitle>Basin research</jtitle><date>2021-04</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>1017</spage><epage>1032</epage><pages>1017-1032</pages><issn>0950-091X</issn><eissn>1365-2117</eissn><abstract>Investigations of sandstone provenance often involve U–Pb dating and chemical/mineralogical investigations of detrital minerals that are stable in sediments. As most stable detrital minerals are from felsic–intermediate rocks, investigations of the only mafic–ultramafic mineral considered stable in sediments, chromian spinel (Cr‐spinel), can reveal contributions from mafic–ultramafic sources. Cr‐spinel chemical compositions are tied to petrogenesis, making it possible to identify the nature of, and differentiate between, potential sources. Earlier detrital Cr‐spinel studies have focused on major and minor element compositions, however, the advent of laser‐ablation analytical techniques now allow routine mineral trace element analyses. Here, we integrate major, minor and trace element compositions of detrital Cr‐spinel from sandstones with a well‐characterised provenance from the Triassic (Anisian to Early Norian) Snadd and De Geerdalen formations of the Barents Shelf. The analysed Cr‐spinel compositions are depleted in the major element cations Fe3+, Al and Mg and enriched in Cr and Fe2+. Relative to MORB chromite, the minor and trace element data show high concentrations of Zn, Co and Mn, low concentrations of Ni and Ga and variable concentrations of Ti, V and Sc. The major element compositions of the detrital Cr‐spinel are similar to ophiolite‐associated Cr‐spinel, while the trace element compositions indicate a more complex petrogenesis influenced by metamorphic alteration. The compositional variations between sample locations are small, suggesting similar source rocks for the detrital Cr‐spinel throughout the study area. The most likely sources of the Cr‐spinel grains are metamorphosed ophiolite complexes in the Uralian Orogen, in accordance with earlier provenance studies. The novel addition of trace element compositions to detrital Cr‐spinel studies adds significant source‐sensitive information.
Cr‐spinel from the Snadd and De Geerdalen formations are distinctly different from Cr‐spinel of the same depositional age to the east of the Uralian Orogen. Major element compositions of detrital Cr‐spinel in the Carnian Osipai Fm. north Siberia is consistent with Cr‐spinel from a large igneous province, while Snadd and De Geerdalen formation Cr‐spinel indicate a ophiolitic source. The addition of trace element compositional data of the Snadd and De Geerdalen formation Cr‐spinel, help identify a metamorphic alteration history of the detrital grains.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/bre.12502</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8059-2426</orcidid><orcidid>https://orcid.org/0000-0003-2313-4602</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-091X |
ispartof | Basin research, 2021-04, Vol.33 (2), p.1017-1032 |
issn | 0950-091X 1365-2117 |
language | eng |
recordid | cdi_proquest_journals_2501869071 |
source | Access via Wiley Online Library |
subjects | Ablation Aluminum Analytical methods Barents Sea Cations Chemical composition Chromite Cr‐spinel Cr‐spinel trace element composition De Geerdalen Formation Iron Isotopes Laser ablation Lasers Low concentrations Magnesium Manganese Mathematical analysis Minerals Nickel Ophiolites Orogeny Petrogenesis Provenance Radiometric dating Rocks Sandstone Sediment Sedimentary rocks Sediments Snadd Formation Spinel Tectonics and Sedimentation Trace elements Triassic Zinc |
title | The importance of trace element analyses in detrital Cr‐spinel provenance studies: An example from the Upper Triassic of the Barents Shelf |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20importance%20of%20trace%20element%20analyses%20in%20detrital%20Cr%E2%80%90spinel%20provenance%20studies:%20An%20example%20from%20the%20Upper%20Triassic%20of%20the%20Barents%20Shelf&rft.jtitle=Basin%20research&rft.au=Harstad,%20Trond%20Sv%C3%A5n%C3%A5&rft.date=2021-04&rft.volume=33&rft.issue=2&rft.spage=1017&rft.epage=1032&rft.pages=1017-1032&rft.issn=0950-091X&rft.eissn=1365-2117&rft_id=info:doi/10.1111/bre.12502&rft_dat=%3Cproquest_cross%3E2501869071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501869071&rft_id=info:pmid/&rfr_iscdi=true |