DIPPA: An improved Method for Bilinear Saddle Point Problems

This paper studies bilinear saddle point problems \(\min_{\bf{x}} \max_{\bf{y}} g(\bf{x}) + \bf{x}^{\top} \bf{A} \bf{y} - h(\bf{y})\), where the functions \(g, h\) are smooth and strongly-convex. When the gradient and proximal oracle related to \(g\) and \(h\) are accessible, optimal algorithms have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Xie, Guangzeng, Han, Yuze, Zhang, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xie, Guangzeng
Han, Yuze
Zhang, Zhihua
description This paper studies bilinear saddle point problems \(\min_{\bf{x}} \max_{\bf{y}} g(\bf{x}) + \bf{x}^{\top} \bf{A} \bf{y} - h(\bf{y})\), where the functions \(g, h\) are smooth and strongly-convex. When the gradient and proximal oracle related to \(g\) and \(h\) are accessible, optimal algorithms have already been developed in the literature \cite{chambolle2011first, palaniappan2016stochastic}. However, the proximal operator is not always easy to compute, especially in constraint zero-sum matrix games \cite{zhang2020sparsified}. This work proposes a new algorithm which only requires the access to the gradients of \(g, h\). Our algorithm achieves a complexity upper bound \(\tilde{\mathcal{O}}\left( \frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}} + \sqrt[4]{\kappa_x \kappa_y (\kappa_x + \kappa_y)} \right)\) which has optimal dependency on the coupling condition number \(\frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}}\) up to logarithmic factors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2501664880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501664880</sourcerecordid><originalsourceid>FETCH-proquest_journals_25016648803</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcfEMCHC0UnDMU8jMLSjKL0tNUfBNLcnIT1FIyy9ScMrMycxLTSxSCE5MSclJVQjIz8wrUQgoyk_KSc0t5mFgTUvMKU7lhdLcDMpuriHOHrpAgwpLU4tL4rPyS4vygFLxRqYGhmZmJhYWBsbEqQIAf302Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501664880</pqid></control><display><type>article</type><title>DIPPA: An improved Method for Bilinear Saddle Point Problems</title><source>Free E- Journals</source><creator>Xie, Guangzeng ; Han, Yuze ; Zhang, Zhihua</creator><creatorcontrib>Xie, Guangzeng ; Han, Yuze ; Zhang, Zhihua</creatorcontrib><description>This paper studies bilinear saddle point problems \(\min_{\bf{x}} \max_{\bf{y}} g(\bf{x}) + \bf{x}^{\top} \bf{A} \bf{y} - h(\bf{y})\), where the functions \(g, h\) are smooth and strongly-convex. When the gradient and proximal oracle related to \(g\) and \(h\) are accessible, optimal algorithms have already been developed in the literature \cite{chambolle2011first, palaniappan2016stochastic}. However, the proximal operator is not always easy to compute, especially in constraint zero-sum matrix games \cite{zhang2020sparsified}. This work proposes a new algorithm which only requires the access to the gradients of \(g, h\). Our algorithm achieves a complexity upper bound \(\tilde{\mathcal{O}}\left( \frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}} + \sqrt[4]{\kappa_x \kappa_y (\kappa_x + \kappa_y)} \right)\) which has optimal dependency on the coupling condition number \(\frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}}\) up to logarithmic factors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Operators (mathematics) ; Saddle points ; Upper bounds</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xie, Guangzeng</creatorcontrib><creatorcontrib>Han, Yuze</creatorcontrib><creatorcontrib>Zhang, Zhihua</creatorcontrib><title>DIPPA: An improved Method for Bilinear Saddle Point Problems</title><title>arXiv.org</title><description>This paper studies bilinear saddle point problems \(\min_{\bf{x}} \max_{\bf{y}} g(\bf{x}) + \bf{x}^{\top} \bf{A} \bf{y} - h(\bf{y})\), where the functions \(g, h\) are smooth and strongly-convex. When the gradient and proximal oracle related to \(g\) and \(h\) are accessible, optimal algorithms have already been developed in the literature \cite{chambolle2011first, palaniappan2016stochastic}. However, the proximal operator is not always easy to compute, especially in constraint zero-sum matrix games \cite{zhang2020sparsified}. This work proposes a new algorithm which only requires the access to the gradients of \(g, h\). Our algorithm achieves a complexity upper bound \(\tilde{\mathcal{O}}\left( \frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}} + \sqrt[4]{\kappa_x \kappa_y (\kappa_x + \kappa_y)} \right)\) which has optimal dependency on the coupling condition number \(\frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}}\) up to logarithmic factors.</description><subject>Algorithms</subject><subject>Operators (mathematics)</subject><subject>Saddle points</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcfEMCHC0UnDMU8jMLSjKL0tNUfBNLcnIT1FIyy9ScMrMycxLTSxSCE5MSclJVQjIz8wrUQgoyk_KSc0t5mFgTUvMKU7lhdLcDMpuriHOHrpAgwpLU4tL4rPyS4vygFLxRqYGhmZmJhYWBsbEqQIAf302Nw</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Xie, Guangzeng</creator><creator>Han, Yuze</creator><creator>Zhang, Zhihua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210315</creationdate><title>DIPPA: An improved Method for Bilinear Saddle Point Problems</title><author>Xie, Guangzeng ; Han, Yuze ; Zhang, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25016648803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Operators (mathematics)</topic><topic>Saddle points</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Guangzeng</creatorcontrib><creatorcontrib>Han, Yuze</creatorcontrib><creatorcontrib>Zhang, Zhihua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Guangzeng</au><au>Han, Yuze</au><au>Zhang, Zhihua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DIPPA: An improved Method for Bilinear Saddle Point Problems</atitle><jtitle>arXiv.org</jtitle><date>2021-03-15</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper studies bilinear saddle point problems \(\min_{\bf{x}} \max_{\bf{y}} g(\bf{x}) + \bf{x}^{\top} \bf{A} \bf{y} - h(\bf{y})\), where the functions \(g, h\) are smooth and strongly-convex. When the gradient and proximal oracle related to \(g\) and \(h\) are accessible, optimal algorithms have already been developed in the literature \cite{chambolle2011first, palaniappan2016stochastic}. However, the proximal operator is not always easy to compute, especially in constraint zero-sum matrix games \cite{zhang2020sparsified}. This work proposes a new algorithm which only requires the access to the gradients of \(g, h\). Our algorithm achieves a complexity upper bound \(\tilde{\mathcal{O}}\left( \frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}} + \sqrt[4]{\kappa_x \kappa_y (\kappa_x + \kappa_y)} \right)\) which has optimal dependency on the coupling condition number \(\frac{\|\bf{A}\|_2}{\sqrt{\mu_x \mu_y}}\) up to logarithmic factors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2501664880
source Free E- Journals
subjects Algorithms
Operators (mathematics)
Saddle points
Upper bounds
title DIPPA: An improved Method for Bilinear Saddle Point Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DIPPA:%20An%20improved%20Method%20for%20Bilinear%20Saddle%20Point%20Problems&rft.jtitle=arXiv.org&rft.au=Xie,%20Guangzeng&rft.date=2021-03-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2501664880%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501664880&rft_id=info:pmid/&rfr_iscdi=true