Heavy Double Neutron Stars: Birth, Midlife, and Death

Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2021-03, Vol.909 (2), p.L19
Hauptverfasser: Galaudage, Shanika, Adamcewicz, Christian, Zhu, Xing-Jiang, Stevenson, Simon, Thrane, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L19
container_title Astrophysical journal. Letters
container_volume 909
creator Galaudage, Shanika
Adamcewicz, Christian
Zhu, Xing-Jiang
Stevenson, Simon
Thrane, Eric
description Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.
doi_str_mv 10.3847/2041-8213/abe7f6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501504788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501504788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3jwGvXfuy2Xx501atUPWgnsPbTUK3rLs12RX639tS6WmGYZjH-xFyzeCW60JNcyhYpnPGp1h6FeQJGR2j06MHcU4uUloD5CCZHhGx8Pi7pfNuKBtP3_zQx66lHz3GdEcf6tivJvS1dk0d_IRi6-jcY7-6JGcBm-Sv_nVMvp4eP2eLbPn-_DK7X2YVV6bPJJeyKiW6MgclGXIvjHSBCzDKSBMMrxCFcphr511ACLrgSmLgzohCIh-Tm8PuJnY_g0-9XXdDbHcnbS6ACSiU1rsWHFpV7FKKPthNrL8xbi0Du4dj99_bPQl7gMP_AHnTVeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501504788</pqid></control><display><type>article</type><title>Heavy Double Neutron Stars: Birth, Midlife, and Death</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Galaudage, Shanika ; Adamcewicz, Christian ; Zhu, Xing-Jiang ; Stevenson, Simon ; Thrane, Eric</creator><creatorcontrib>Galaudage, Shanika ; Adamcewicz, Christian ; Zhu, Xing-Jiang ; Stevenson, Simon ; Thrane, Eric</creatorcontrib><description>Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/abe7f6</identifier><language>eng</language><publisher>Austin: IOP Publishing</publisher><subject>Astronomy ; Binary stars ; Death ; Delay time ; Gravitational waves ; Hypotheses ; Mass distribution ; Mass transfer ; Mortality ; Neutron stars ; Neutrons ; Outliers (statistics) ; Pulsars ; Radio astronomy ; Star mergers</subject><ispartof>Astrophysical journal. Letters, 2021-03, Vol.909 (2), p.L19</ispartof><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</citedby><cites>FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</cites><orcidid>0000-0001-5525-6255 ; 0000-0002-6100-537X ; 0000-0001-7049-6468 ; 0000-0002-4418-3895 ; 0000-0002-1819-0215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Galaudage, Shanika</creatorcontrib><creatorcontrib>Adamcewicz, Christian</creatorcontrib><creatorcontrib>Zhu, Xing-Jiang</creatorcontrib><creatorcontrib>Stevenson, Simon</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><title>Heavy Double Neutron Stars: Birth, Midlife, and Death</title><title>Astrophysical journal. Letters</title><description>Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.</description><subject>Astronomy</subject><subject>Binary stars</subject><subject>Death</subject><subject>Delay time</subject><subject>Gravitational waves</subject><subject>Hypotheses</subject><subject>Mass distribution</subject><subject>Mass transfer</subject><subject>Mortality</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Outliers (statistics)</subject><subject>Pulsars</subject><subject>Radio astronomy</subject><subject>Star mergers</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEUxIMoWKt3jwGvXfuy2Xx501atUPWgnsPbTUK3rLs12RX639tS6WmGYZjH-xFyzeCW60JNcyhYpnPGp1h6FeQJGR2j06MHcU4uUloD5CCZHhGx8Pi7pfNuKBtP3_zQx66lHz3GdEcf6tivJvS1dk0d_IRi6-jcY7-6JGcBm-Sv_nVMvp4eP2eLbPn-_DK7X2YVV6bPJJeyKiW6MgclGXIvjHSBCzDKSBMMrxCFcphr511ACLrgSmLgzohCIh-Tm8PuJnY_g0-9XXdDbHcnbS6ACSiU1rsWHFpV7FKKPthNrL8xbi0Du4dj99_bPQl7gMP_AHnTVeQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Galaudage, Shanika</creator><creator>Adamcewicz, Christian</creator><creator>Zhu, Xing-Jiang</creator><creator>Stevenson, Simon</creator><creator>Thrane, Eric</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5525-6255</orcidid><orcidid>https://orcid.org/0000-0002-6100-537X</orcidid><orcidid>https://orcid.org/0000-0001-7049-6468</orcidid><orcidid>https://orcid.org/0000-0002-4418-3895</orcidid><orcidid>https://orcid.org/0000-0002-1819-0215</orcidid></search><sort><creationdate>20210301</creationdate><title>Heavy Double Neutron Stars: Birth, Midlife, and Death</title><author>Galaudage, Shanika ; Adamcewicz, Christian ; Zhu, Xing-Jiang ; Stevenson, Simon ; Thrane, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Binary stars</topic><topic>Death</topic><topic>Delay time</topic><topic>Gravitational waves</topic><topic>Hypotheses</topic><topic>Mass distribution</topic><topic>Mass transfer</topic><topic>Mortality</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Outliers (statistics)</topic><topic>Pulsars</topic><topic>Radio astronomy</topic><topic>Star mergers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galaudage, Shanika</creatorcontrib><creatorcontrib>Adamcewicz, Christian</creatorcontrib><creatorcontrib>Zhu, Xing-Jiang</creatorcontrib><creatorcontrib>Stevenson, Simon</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galaudage, Shanika</au><au>Adamcewicz, Christian</au><au>Zhu, Xing-Jiang</au><au>Stevenson, Simon</au><au>Thrane, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy Double Neutron Stars: Birth, Midlife, and Death</atitle><jtitle>Astrophysical journal. Letters</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>909</volume><issue>2</issue><spage>L19</spage><pages>L19-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.</abstract><cop>Austin</cop><pub>IOP Publishing</pub><doi>10.3847/2041-8213/abe7f6</doi><orcidid>https://orcid.org/0000-0001-5525-6255</orcidid><orcidid>https://orcid.org/0000-0002-6100-537X</orcidid><orcidid>https://orcid.org/0000-0001-7049-6468</orcidid><orcidid>https://orcid.org/0000-0002-4418-3895</orcidid><orcidid>https://orcid.org/0000-0002-1819-0215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2021-03, Vol.909 (2), p.L19
issn 2041-8205
2041-8213
language eng
recordid cdi_proquest_journals_2501504788
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection
subjects Astronomy
Binary stars
Death
Delay time
Gravitational waves
Hypotheses
Mass distribution
Mass transfer
Mortality
Neutron stars
Neutrons
Outliers (statistics)
Pulsars
Radio astronomy
Star mergers
title Heavy Double Neutron Stars: Birth, Midlife, and Death
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%20Double%20Neutron%20Stars:%20Birth,%20Midlife,%20and%20Death&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Galaudage,%20Shanika&rft.date=2021-03-01&rft.volume=909&rft.issue=2&rft.spage=L19&rft.pages=L19-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/abe7f6&rft_dat=%3Cproquest_cross%3E2501504788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501504788&rft_id=info:pmid/&rfr_iscdi=true