Heavy Double Neutron Stars: Birth, Midlife, and Death
Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS f...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2021-03, Vol.909 (2), p.L19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L19 |
container_title | Astrophysical journal. Letters |
container_volume | 909 |
creator | Galaudage, Shanika Adamcewicz, Christian Zhu, Xing-Jiang Stevenson, Simon Thrane, Eric |
description | Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy. |
doi_str_mv | 10.3847/2041-8213/abe7f6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501504788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501504788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt3jwGvXfuy2Xx501atUPWgnsPbTUK3rLs12RX639tS6WmGYZjH-xFyzeCW60JNcyhYpnPGp1h6FeQJGR2j06MHcU4uUloD5CCZHhGx8Pi7pfNuKBtP3_zQx66lHz3GdEcf6tivJvS1dk0d_IRi6-jcY7-6JGcBm-Sv_nVMvp4eP2eLbPn-_DK7X2YVV6bPJJeyKiW6MgclGXIvjHSBCzDKSBMMrxCFcphr511ACLrgSmLgzohCIh-Tm8PuJnY_g0-9XXdDbHcnbS6ACSiU1rsWHFpV7FKKPthNrL8xbi0Du4dj99_bPQl7gMP_AHnTVeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501504788</pqid></control><display><type>article</type><title>Heavy Double Neutron Stars: Birth, Midlife, and Death</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Galaudage, Shanika ; Adamcewicz, Christian ; Zhu, Xing-Jiang ; Stevenson, Simon ; Thrane, Eric</creator><creatorcontrib>Galaudage, Shanika ; Adamcewicz, Christian ; Zhu, Xing-Jiang ; Stevenson, Simon ; Thrane, Eric</creatorcontrib><description>Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/abe7f6</identifier><language>eng</language><publisher>Austin: IOP Publishing</publisher><subject>Astronomy ; Binary stars ; Death ; Delay time ; Gravitational waves ; Hypotheses ; Mass distribution ; Mass transfer ; Mortality ; Neutron stars ; Neutrons ; Outliers (statistics) ; Pulsars ; Radio astronomy ; Star mergers</subject><ispartof>Astrophysical journal. Letters, 2021-03, Vol.909 (2), p.L19</ispartof><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</citedby><cites>FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</cites><orcidid>0000-0001-5525-6255 ; 0000-0002-6100-537X ; 0000-0001-7049-6468 ; 0000-0002-4418-3895 ; 0000-0002-1819-0215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Galaudage, Shanika</creatorcontrib><creatorcontrib>Adamcewicz, Christian</creatorcontrib><creatorcontrib>Zhu, Xing-Jiang</creatorcontrib><creatorcontrib>Stevenson, Simon</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><title>Heavy Double Neutron Stars: Birth, Midlife, and Death</title><title>Astrophysical journal. Letters</title><description>Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.</description><subject>Astronomy</subject><subject>Binary stars</subject><subject>Death</subject><subject>Delay time</subject><subject>Gravitational waves</subject><subject>Hypotheses</subject><subject>Mass distribution</subject><subject>Mass transfer</subject><subject>Mortality</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Outliers (statistics)</subject><subject>Pulsars</subject><subject>Radio astronomy</subject><subject>Star mergers</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEUxIMoWKt3jwGvXfuy2Xx501atUPWgnsPbTUK3rLs12RX639tS6WmGYZjH-xFyzeCW60JNcyhYpnPGp1h6FeQJGR2j06MHcU4uUloD5CCZHhGx8Pi7pfNuKBtP3_zQx66lHz3GdEcf6tivJvS1dk0d_IRi6-jcY7-6JGcBm-Sv_nVMvp4eP2eLbPn-_DK7X2YVV6bPJJeyKiW6MgclGXIvjHSBCzDKSBMMrxCFcphr511ACLrgSmLgzohCIh-Tm8PuJnY_g0-9XXdDbHcnbS6ACSiU1rsWHFpV7FKKPthNrL8xbi0Du4dj99_bPQl7gMP_AHnTVeQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Galaudage, Shanika</creator><creator>Adamcewicz, Christian</creator><creator>Zhu, Xing-Jiang</creator><creator>Stevenson, Simon</creator><creator>Thrane, Eric</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5525-6255</orcidid><orcidid>https://orcid.org/0000-0002-6100-537X</orcidid><orcidid>https://orcid.org/0000-0001-7049-6468</orcidid><orcidid>https://orcid.org/0000-0002-4418-3895</orcidid><orcidid>https://orcid.org/0000-0002-1819-0215</orcidid></search><sort><creationdate>20210301</creationdate><title>Heavy Double Neutron Stars: Birth, Midlife, and Death</title><author>Galaudage, Shanika ; Adamcewicz, Christian ; Zhu, Xing-Jiang ; Stevenson, Simon ; Thrane, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6366cb6adb20761a3e596df35097969f93caa57da28dedfa0f84376af3d9546a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Binary stars</topic><topic>Death</topic><topic>Delay time</topic><topic>Gravitational waves</topic><topic>Hypotheses</topic><topic>Mass distribution</topic><topic>Mass transfer</topic><topic>Mortality</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Outliers (statistics)</topic><topic>Pulsars</topic><topic>Radio astronomy</topic><topic>Star mergers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galaudage, Shanika</creatorcontrib><creatorcontrib>Adamcewicz, Christian</creatorcontrib><creatorcontrib>Zhu, Xing-Jiang</creatorcontrib><creatorcontrib>Stevenson, Simon</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galaudage, Shanika</au><au>Adamcewicz, Christian</au><au>Zhu, Xing-Jiang</au><au>Stevenson, Simon</au><au>Thrane, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heavy Double Neutron Stars: Birth, Midlife, and Death</atitle><jtitle>Astrophysical journal. Letters</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>909</volume><issue>2</issue><spage>L19</spage><pages>L19-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Radio pulsar observations probe the lives of Galactic double neutron star (DNS) systems while gravitational waves enable us to study extragalactic DNS in their final moments. By combining measurements from radio and gravitational-wave astronomy, we seek to gain a more complete understanding of DNS from formation to merger. We analyze the recent gravitational-wave binary neutron star mergers GW170817 and GW190425 in the context of other DNS known from radio astronomy. By employing a model for the birth and evolution of DNS, we measure the mass distribution of DNS at birth, at midlife (in the radio), and at death (in gravitational waves). We consider the hypothesis that the high-mass gravitational-wave event GW190425 is part of a subpopulation formed through unstable case BB mass transfer, which quickly merge in ∼10–100 Myr. We find only mild evidence to support this hypothesis and that GW190425 is not a clear outlier from the radio population as previously claimed. If there are fast-merging binaries, we estimate that they constitute 8%–79% of DNS at birth (90% credibility). We estimate the typical delay time between the birth and death of fast-merging binaries to be ≈5–401 Myr (90% credibility). We discuss the implications for radio and gravitational-wave astronomy.</abstract><cop>Austin</cop><pub>IOP Publishing</pub><doi>10.3847/2041-8213/abe7f6</doi><orcidid>https://orcid.org/0000-0001-5525-6255</orcidid><orcidid>https://orcid.org/0000-0002-6100-537X</orcidid><orcidid>https://orcid.org/0000-0001-7049-6468</orcidid><orcidid>https://orcid.org/0000-0002-4418-3895</orcidid><orcidid>https://orcid.org/0000-0002-1819-0215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2021-03, Vol.909 (2), p.L19 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_proquest_journals_2501504788 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection |
subjects | Astronomy Binary stars Death Delay time Gravitational waves Hypotheses Mass distribution Mass transfer Mortality Neutron stars Neutrons Outliers (statistics) Pulsars Radio astronomy Star mergers |
title | Heavy Double Neutron Stars: Birth, Midlife, and Death |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heavy%20Double%20Neutron%20Stars:%20Birth,%20Midlife,%20and%20Death&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Galaudage,%20Shanika&rft.date=2021-03-01&rft.volume=909&rft.issue=2&rft.spage=L19&rft.pages=L19-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/abe7f6&rft_dat=%3Cproquest_cross%3E2501504788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501504788&rft_id=info:pmid/&rfr_iscdi=true |