Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type

In this paper, we introduce the finite neighboring type and the finite chain length conditions for a connected self-similar set K . We show that with these two conditions, K is a finitely ramified graph directed (f.r.g.d.) fractal defined by Hambly and Nyberg (Proc. Edinb. Math. Soc. (2) 46 (1), 1–3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2021-04, Vol.54 (4), p.581-606
Hauptverfasser: Cao, Shiping, Qiu, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 4
container_start_page 581
container_title Potential analysis
container_volume 54
creator Cao, Shiping
Qiu, Hua
description In this paper, we introduce the finite neighboring type and the finite chain length conditions for a connected self-similar set K . We show that with these two conditions, K is a finitely ramified graph directed (f.r.g.d.) fractal defined by Hambly and Nyberg (Proc. Edinb. Math. Soc. (2) 46 (1), 1–34 2003 ). We give some nontrivial examples and compute the harmonic structures on them explicitly. Furthermore, for a f.r.g.d. self-similar set K , we provide an equivalent description, the finitely ramified of finite type (f.r.f.t.) cell structure of K , and investigate the relationship of harmonic structures associated with different f.r.f.t. cell structures of K .
doi_str_mv 10.1007/s11118-020-09840-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501491003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501491003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bb4ee2112bf060b829bdcd8414ff98134d7ff92e1c05b819661de3744050beb43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-i9mcwjSylWhYrQVnAXJjOJpsyjJiml_97oKO68m_vgnHPhI-QS4RoBihuPsUoKDCiIkgPdH5EJZgWjgonXYzIBwXLKcsBTcub9BgBYUZQT8rTU3vpQ9bVO5oPrfDL0yUq3hq5sZ9vKxSX4ZG_DezK3vQ06WVadNbaugo3Swfye14etPicnpmq9vvjpU_Iyv1vPHuji-f5xdrugdYoiUKW41gyRKQM5qJIJ1dRNyZEbI0pMeVPEgWmsIVMlijzHRqcF55CB0oqnU3I15m7d8LHTPsjNsHN9fClZBshFhJJGFRtVtRu8d9rIrbNd5Q4SQX5hkyM2GbHJb2xyH03paPJR3L9p9xf9j-sTR_Zv1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501491003</pqid></control><display><type>article</type><title>Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cao, Shiping ; Qiu, Hua</creator><creatorcontrib>Cao, Shiping ; Qiu, Hua</creatorcontrib><description>In this paper, we introduce the finite neighboring type and the finite chain length conditions for a connected self-similar set K . We show that with these two conditions, K is a finitely ramified graph directed (f.r.g.d.) fractal defined by Hambly and Nyberg (Proc. Edinb. Math. Soc. (2) 46 (1), 1–34 2003 ). We give some nontrivial examples and compute the harmonic structures on them explicitly. Furthermore, for a f.r.g.d. self-similar set K , we provide an equivalent description, the finitely ramified of finite type (f.r.f.t.) cell structure of K , and investigate the relationship of harmonic structures associated with different f.r.f.t. cell structures of K .</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-020-09840-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Functional Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Probability Theory and Stochastic Processes ; Self-similarity</subject><ispartof>Potential analysis, 2021-04, Vol.54 (4), p.581-606</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bb4ee2112bf060b829bdcd8414ff98134d7ff92e1c05b819661de3744050beb43</citedby><cites>FETCH-LOGICAL-c319t-bb4ee2112bf060b829bdcd8414ff98134d7ff92e1c05b819661de3744050beb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-020-09840-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-020-09840-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Cao, Shiping</creatorcontrib><creatorcontrib>Qiu, Hua</creatorcontrib><title>Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper, we introduce the finite neighboring type and the finite chain length conditions for a connected self-similar set K . We show that with these two conditions, K is a finitely ramified graph directed (f.r.g.d.) fractal defined by Hambly and Nyberg (Proc. Edinb. Math. Soc. (2) 46 (1), 1–34 2003 ). We give some nontrivial examples and compute the harmonic structures on them explicitly. Furthermore, for a f.r.g.d. self-similar set K , we provide an equivalent description, the finitely ramified of finite type (f.r.f.t.) cell structure of K , and investigate the relationship of harmonic structures associated with different f.r.f.t. cell structures of K .</description><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Self-similarity</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-i9mcwjSylWhYrQVnAXJjOJpsyjJiml_97oKO68m_vgnHPhI-QS4RoBihuPsUoKDCiIkgPdH5EJZgWjgonXYzIBwXLKcsBTcub9BgBYUZQT8rTU3vpQ9bVO5oPrfDL0yUq3hq5sZ9vKxSX4ZG_DezK3vQ06WVadNbaugo3Swfye14etPicnpmq9vvjpU_Iyv1vPHuji-f5xdrugdYoiUKW41gyRKQM5qJIJ1dRNyZEbI0pMeVPEgWmsIVMlijzHRqcF55CB0oqnU3I15m7d8LHTPsjNsHN9fClZBshFhJJGFRtVtRu8d9rIrbNd5Q4SQX5hkyM2GbHJb2xyH03paPJR3L9p9xf9j-sTR_Zv1w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Cao, Shiping</creator><creator>Qiu, Hua</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type</title><author>Cao, Shiping ; Qiu, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bb4ee2112bf060b829bdcd8414ff98134d7ff92e1c05b819661de3744050beb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Shiping</creatorcontrib><creatorcontrib>Qiu, Hua</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Shiping</au><au>Qiu, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>54</volume><issue>4</issue><spage>581</spage><epage>606</epage><pages>581-606</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper, we introduce the finite neighboring type and the finite chain length conditions for a connected self-similar set K . We show that with these two conditions, K is a finitely ramified graph directed (f.r.g.d.) fractal defined by Hambly and Nyberg (Proc. Edinb. Math. Soc. (2) 46 (1), 1–34 2003 ). We give some nontrivial examples and compute the harmonic structures on them explicitly. Furthermore, for a f.r.g.d. self-similar set K , we provide an equivalent description, the finitely ramified of finite type (f.r.f.t.) cell structure of K , and investigate the relationship of harmonic structures associated with different f.r.f.t. cell structures of K .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-020-09840-w</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2021-04, Vol.54 (4), p.581-606
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2501491003
source SpringerLink Journals - AutoHoldings
subjects Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Potential Theory
Probability Theory and Stochastic Processes
Self-similarity
title Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20Forms%20on%20Self-Similar%20Sets%20with%20Finite%20Ramification%20of%20Finite%20Type&rft.jtitle=Potential%20analysis&rft.au=Cao,%20Shiping&rft.date=2021-04-01&rft.volume=54&rft.issue=4&rft.spage=581&rft.epage=606&rft.pages=581-606&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-020-09840-w&rft_dat=%3Cproquest_cross%3E2501491003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501491003&rft_id=info:pmid/&rfr_iscdi=true