Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts

Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major adva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in Manufacturing and Materials Processing 2021-03, Vol.8 (1), p.73-96
Hauptverfasser: Sharma, Vishal, Chand, Ramesh, Sharma, Vishal S, Sachdeva, Anish, Singh, Sharanjit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 73
container_title Lasers in Manufacturing and Materials Processing
container_volume 8
creator Sharma, Vishal
Chand, Ramesh
Sharma, Vishal S
Sachdeva, Anish
Singh, Sharanjit
description Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.
doi_str_mv 10.1007/s40516-020-00136-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2501490514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707198316</galeid><sourcerecordid>A707198316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</originalsourceid><addsrcrecordid>eNp9kU1v2zAMho1hBRak_QM7Cdh1TinKtuzdgmz9AAKsQLtdBVWmUmW2lUlOgv77KXWx3goe-AE-pMQ3yz5zWHAAeRkLKHmVA0IOwEWVHz9kM-RNlUsU8uP_GJtP2UWMWwBAXgAWYpbR7XCgOLqNHt2wYfdPwQ1_9Ia-sdXy-1f28ESh1x3TQ8t--27f0xicYdYHdk8dmdEdiK11pJS7YaRwGuItu_Pds-5dS-xOhzGeZ2dWd5EuXv08-3X142F1k69_Xt-uluvcoBTHvCTJ6xqhtsSrygDJshCitS0hQlNZxLrUWGMpHiVKjYVE06LhZSPhEUoU8-zLNHcX_N99-pfa-n0Y0kqFJfCiSYcqUtdi6trojpQbrB-DNsla6p3xA1mX6ksJkje14FUCcAJM8DEGsmoXXK_Ds-KgThKoSQKVJFAvEqhjgsQExd3pKhTe3vIO9Q_3Yoeh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501490514</pqid></control><display><type>article</type><title>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</title><source>Springer Nature - Complete Springer Journals</source><creator>Sharma, Vishal ; Chand, Ramesh ; Sharma, Vishal S ; Sachdeva, Anish ; Singh, Sharanjit</creator><creatorcontrib>Sharma, Vishal ; Chand, Ramesh ; Sharma, Vishal S ; Sachdeva, Anish ; Singh, Sharanjit</creatorcontrib><description>Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.</description><identifier>ISSN: 2196-7229</identifier><identifier>EISSN: 2196-7237</identifier><identifier>DOI: 10.1007/s40516-020-00136-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Aerospace industry ; Biomedical materials ; CAD ; CAD-CAM systems ; Computer aided design ; Computer programs ; Engineering ; Industrial and Production Engineering ; Investigations ; Laser sintering ; Machines ; Manufacturing ; Optimization ; Polyamide resins ; Polyamides ; Process parameters ; Processes ; Rapid prototyping ; Regression analysis ; Regression models ; Response surface methodology ; Shrinkage ; Sintering ; Surfaces and Interfaces ; Thickness ; Thin Films</subject><ispartof>Lasers in Manufacturing and Materials Processing, 2021-03, Vol.8 (1), p.73-96</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</citedby><cites>FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</cites><orcidid>0000-0001-8348-1118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40516-020-00136-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40516-020-00136-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sharma, Vishal</creatorcontrib><creatorcontrib>Chand, Ramesh</creatorcontrib><creatorcontrib>Sharma, Vishal S</creatorcontrib><creatorcontrib>Sachdeva, Anish</creatorcontrib><creatorcontrib>Singh, Sharanjit</creatorcontrib><title>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</title><title>Lasers in Manufacturing and Materials Processing</title><addtitle>Lasers Manuf. Mater. Process</addtitle><description>Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.</description><subject>Accuracy</subject><subject>Aerospace industry</subject><subject>Biomedical materials</subject><subject>CAD</subject><subject>CAD-CAM systems</subject><subject>Computer aided design</subject><subject>Computer programs</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Investigations</subject><subject>Laser sintering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Optimization</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Rapid prototyping</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Shrinkage</subject><subject>Sintering</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><issn>2196-7229</issn><issn>2196-7237</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v2zAMho1hBRak_QM7Cdh1TinKtuzdgmz9AAKsQLtdBVWmUmW2lUlOgv77KXWx3goe-AE-pMQ3yz5zWHAAeRkLKHmVA0IOwEWVHz9kM-RNlUsU8uP_GJtP2UWMWwBAXgAWYpbR7XCgOLqNHt2wYfdPwQ1_9Ia-sdXy-1f28ESh1x3TQ8t--27f0xicYdYHdk8dmdEdiK11pJS7YaRwGuItu_Pds-5dS-xOhzGeZ2dWd5EuXv08-3X142F1k69_Xt-uluvcoBTHvCTJ6xqhtsSrygDJshCitS0hQlNZxLrUWGMpHiVKjYVE06LhZSPhEUoU8-zLNHcX_N99-pfa-n0Y0kqFJfCiSYcqUtdi6trojpQbrB-DNsla6p3xA1mX6ksJkje14FUCcAJM8DEGsmoXXK_Ds-KgThKoSQKVJFAvEqhjgsQExd3pKhTe3vIO9Q_3Yoeh</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sharma, Vishal</creator><creator>Chand, Ramesh</creator><creator>Sharma, Vishal S</creator><creator>Sachdeva, Anish</creator><creator>Singh, Sharanjit</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0001-8348-1118</orcidid></search><sort><creationdate>20210301</creationdate><title>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</title><author>Sharma, Vishal ; Chand, Ramesh ; Sharma, Vishal S ; Sachdeva, Anish ; Singh, Sharanjit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aerospace industry</topic><topic>Biomedical materials</topic><topic>CAD</topic><topic>CAD-CAM systems</topic><topic>Computer aided design</topic><topic>Computer programs</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Investigations</topic><topic>Laser sintering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Optimization</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Rapid prototyping</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Shrinkage</topic><topic>Sintering</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Vishal</creatorcontrib><creatorcontrib>Chand, Ramesh</creatorcontrib><creatorcontrib>Sharma, Vishal S</creatorcontrib><creatorcontrib>Sachdeva, Anish</creatorcontrib><creatorcontrib>Singh, Sharanjit</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Lasers in Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Vishal</au><au>Chand, Ramesh</au><au>Sharma, Vishal S</au><au>Sachdeva, Anish</au><au>Singh, Sharanjit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</atitle><jtitle>Lasers in Manufacturing and Materials Processing</jtitle><stitle>Lasers Manuf. Mater. Process</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>73</spage><epage>96</epage><pages>73-96</pages><issn>2196-7229</issn><eissn>2196-7237</eissn><abstract>Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40516-020-00136-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8348-1118</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-7229
ispartof Lasers in Manufacturing and Materials Processing, 2021-03, Vol.8 (1), p.73-96
issn 2196-7229
2196-7237
language eng
recordid cdi_proquest_journals_2501490514
source Springer Nature - Complete Springer Journals
subjects Accuracy
Aerospace industry
Biomedical materials
CAD
CAD-CAM systems
Computer aided design
Computer programs
Engineering
Industrial and Production Engineering
Investigations
Laser sintering
Machines
Manufacturing
Optimization
Polyamide resins
Polyamides
Process parameters
Processes
Rapid prototyping
Regression analysis
Regression models
Response surface methodology
Shrinkage
Sintering
Surfaces and Interfaces
Thickness
Thin Films
title Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Shrinkage:%20CAD,%20Thermal%20and%20Volumetric%20for%20Selective%20Laser%20Sintering%20of%20Polyamide%20Parts&rft.jtitle=Lasers%20in%20Manufacturing%20and%20Materials%20Processing&rft.au=Sharma,%20Vishal&rft.date=2021-03-01&rft.volume=8&rft.issue=1&rft.spage=73&rft.epage=96&rft.pages=73-96&rft.issn=2196-7229&rft.eissn=2196-7237&rft_id=info:doi/10.1007/s40516-020-00136-w&rft_dat=%3Cgale_proqu%3EA707198316%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501490514&rft_id=info:pmid/&rft_galeid=A707198316&rfr_iscdi=true