Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts
Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major adva...
Gespeichert in:
Veröffentlicht in: | Lasers in Manufacturing and Materials Processing 2021-03, Vol.8 (1), p.73-96 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Lasers in Manufacturing and Materials Processing |
container_volume | 8 |
creator | Sharma, Vishal Chand, Ramesh Sharma, Vishal S Sachdeva, Anish Singh, Sharanjit |
description | Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts. |
doi_str_mv | 10.1007/s40516-020-00136-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2501490514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707198316</galeid><sourcerecordid>A707198316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</originalsourceid><addsrcrecordid>eNp9kU1v2zAMho1hBRak_QM7Cdh1TinKtuzdgmz9AAKsQLtdBVWmUmW2lUlOgv77KXWx3goe-AE-pMQ3yz5zWHAAeRkLKHmVA0IOwEWVHz9kM-RNlUsU8uP_GJtP2UWMWwBAXgAWYpbR7XCgOLqNHt2wYfdPwQ1_9Ia-sdXy-1f28ESh1x3TQ8t--27f0xicYdYHdk8dmdEdiK11pJS7YaRwGuItu_Pds-5dS-xOhzGeZ2dWd5EuXv08-3X142F1k69_Xt-uluvcoBTHvCTJ6xqhtsSrygDJshCitS0hQlNZxLrUWGMpHiVKjYVE06LhZSPhEUoU8-zLNHcX_N99-pfa-n0Y0kqFJfCiSYcqUtdi6trojpQbrB-DNsla6p3xA1mX6ksJkje14FUCcAJM8DEGsmoXXK_Ds-KgThKoSQKVJFAvEqhjgsQExd3pKhTe3vIO9Q_3Yoeh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501490514</pqid></control><display><type>article</type><title>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</title><source>Springer Nature - Complete Springer Journals</source><creator>Sharma, Vishal ; Chand, Ramesh ; Sharma, Vishal S ; Sachdeva, Anish ; Singh, Sharanjit</creator><creatorcontrib>Sharma, Vishal ; Chand, Ramesh ; Sharma, Vishal S ; Sachdeva, Anish ; Singh, Sharanjit</creatorcontrib><description>Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.</description><identifier>ISSN: 2196-7229</identifier><identifier>EISSN: 2196-7237</identifier><identifier>DOI: 10.1007/s40516-020-00136-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Aerospace industry ; Biomedical materials ; CAD ; CAD-CAM systems ; Computer aided design ; Computer programs ; Engineering ; Industrial and Production Engineering ; Investigations ; Laser sintering ; Machines ; Manufacturing ; Optimization ; Polyamide resins ; Polyamides ; Process parameters ; Processes ; Rapid prototyping ; Regression analysis ; Regression models ; Response surface methodology ; Shrinkage ; Sintering ; Surfaces and Interfaces ; Thickness ; Thin Films</subject><ispartof>Lasers in Manufacturing and Materials Processing, 2021-03, Vol.8 (1), p.73-96</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</citedby><cites>FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</cites><orcidid>0000-0001-8348-1118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40516-020-00136-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40516-020-00136-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sharma, Vishal</creatorcontrib><creatorcontrib>Chand, Ramesh</creatorcontrib><creatorcontrib>Sharma, Vishal S</creatorcontrib><creatorcontrib>Sachdeva, Anish</creatorcontrib><creatorcontrib>Singh, Sharanjit</creatorcontrib><title>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</title><title>Lasers in Manufacturing and Materials Processing</title><addtitle>Lasers Manuf. Mater. Process</addtitle><description>Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.</description><subject>Accuracy</subject><subject>Aerospace industry</subject><subject>Biomedical materials</subject><subject>CAD</subject><subject>CAD-CAM systems</subject><subject>Computer aided design</subject><subject>Computer programs</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Investigations</subject><subject>Laser sintering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Optimization</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Rapid prototyping</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Shrinkage</subject><subject>Sintering</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><issn>2196-7229</issn><issn>2196-7237</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v2zAMho1hBRak_QM7Cdh1TinKtuzdgmz9AAKsQLtdBVWmUmW2lUlOgv77KXWx3goe-AE-pMQ3yz5zWHAAeRkLKHmVA0IOwEWVHz9kM-RNlUsU8uP_GJtP2UWMWwBAXgAWYpbR7XCgOLqNHt2wYfdPwQ1_9Ia-sdXy-1f28ESh1x3TQ8t--27f0xicYdYHdk8dmdEdiK11pJS7YaRwGuItu_Pds-5dS-xOhzGeZ2dWd5EuXv08-3X142F1k69_Xt-uluvcoBTHvCTJ6xqhtsSrygDJshCitS0hQlNZxLrUWGMpHiVKjYVE06LhZSPhEUoU8-zLNHcX_N99-pfa-n0Y0kqFJfCiSYcqUtdi6trojpQbrB-DNsla6p3xA1mX6ksJkje14FUCcAJM8DEGsmoXXK_Ds-KgThKoSQKVJFAvEqhjgsQExd3pKhTe3vIO9Q_3Yoeh</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sharma, Vishal</creator><creator>Chand, Ramesh</creator><creator>Sharma, Vishal S</creator><creator>Sachdeva, Anish</creator><creator>Singh, Sharanjit</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0001-8348-1118</orcidid></search><sort><creationdate>20210301</creationdate><title>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</title><author>Sharma, Vishal ; Chand, Ramesh ; Sharma, Vishal S ; Sachdeva, Anish ; Singh, Sharanjit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273w-5e7188208fe166c0e75433dfde22096f2285a28253b727a2472cd2c15970b0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aerospace industry</topic><topic>Biomedical materials</topic><topic>CAD</topic><topic>CAD-CAM systems</topic><topic>Computer aided design</topic><topic>Computer programs</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Investigations</topic><topic>Laser sintering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Optimization</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Rapid prototyping</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Shrinkage</topic><topic>Sintering</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Vishal</creatorcontrib><creatorcontrib>Chand, Ramesh</creatorcontrib><creatorcontrib>Sharma, Vishal S</creatorcontrib><creatorcontrib>Sachdeva, Anish</creatorcontrib><creatorcontrib>Singh, Sharanjit</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Lasers in Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Vishal</au><au>Chand, Ramesh</au><au>Sharma, Vishal S</au><au>Sachdeva, Anish</au><au>Singh, Sharanjit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts</atitle><jtitle>Lasers in Manufacturing and Materials Processing</jtitle><stitle>Lasers Manuf. Mater. Process</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>73</spage><epage>96</epage><pages>73-96</pages><issn>2196-7229</issn><eissn>2196-7237</eissn><abstract>Selective laser sintering (SLS) is an additive manufacturing (AM) process, which is widely used for fabrication of end used products, directly from computer aided design (CAD) data. SLS process is usually used in different areas such as biomedical, automobile and aerospace industries. The major advantage of this process is that the designer can visualize and test the specimens before the full scale production of parts. Therefore, to achieve a good dimensional accuracy in order to fulfill the demands of these fields is a key parameter. Dimensional accuracy of SLS process is mainly influenced by geometry, process parameters and materials. It can only be enhanced by controlling the shrinkage of parts. Therefore, this work is carried out to analyze the effect of crucial contributing factors (i.e, laser power, bed temperature, layer thickness, scan spacing and orientation) for the shrinkage (CAD, thermal and volumetric) of duraform polyamide specimens. Face centered central composite (CCD) design is used for the collection of data. Response surface methodology (RSM) is used to monitor the effects as well as interactions of selected parameters, and for the development of regression models. Multi-response optimization of shrinkage along with composite desirability is employed for different optimized selected SLS parameters. It has been found that the laser power 41 W, bed temperature 170 °C, layer thickness 0.09 mm, scan spacing 0.15 mm and orientation 85.68 degree is a most significant optimized range of these parameters to improve the overall shrinkage measures of parts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40516-020-00136-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8348-1118</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7229 |
ispartof | Lasers in Manufacturing and Materials Processing, 2021-03, Vol.8 (1), p.73-96 |
issn | 2196-7229 2196-7237 |
language | eng |
recordid | cdi_proquest_journals_2501490514 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Aerospace industry Biomedical materials CAD CAD-CAM systems Computer aided design Computer programs Engineering Industrial and Production Engineering Investigations Laser sintering Machines Manufacturing Optimization Polyamide resins Polyamides Process parameters Processes Rapid prototyping Regression analysis Regression models Response surface methodology Shrinkage Sintering Surfaces and Interfaces Thickness Thin Films |
title | Investigating Shrinkage: CAD, Thermal and Volumetric for Selective Laser Sintering of Polyamide Parts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Shrinkage:%20CAD,%20Thermal%20and%20Volumetric%20for%20Selective%20Laser%20Sintering%20of%20Polyamide%20Parts&rft.jtitle=Lasers%20in%20Manufacturing%20and%20Materials%20Processing&rft.au=Sharma,%20Vishal&rft.date=2021-03-01&rft.volume=8&rft.issue=1&rft.spage=73&rft.epage=96&rft.pages=73-96&rft.issn=2196-7229&rft.eissn=2196-7237&rft_id=info:doi/10.1007/s40516-020-00136-w&rft_dat=%3Cgale_proqu%3EA707198316%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501490514&rft_id=info:pmid/&rft_galeid=A707198316&rfr_iscdi=true |