Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions
In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives)...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (10), p.6298-6305 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6305 |
---|---|
container_issue | 10 |
container_start_page | 6298 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Gao, Rui-Ting Wu, Lijun Liu, Shujie Hu, Kan Liu, Xianhu Zhang, Jun Wang, Lei |
description | In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems. |
doi_str_mv | 10.1039/d0ta12338b |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2501486685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501486685</sourcerecordid><originalsourceid>FETCH-LOGICAL-g216t-e344a56d7c5adf4c66c7648ade6cb0d1b945ca7a8c4829711b3876d690275eae3</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIVKUXvsASRxSwY8exudGKl1SpF-AabRyndZXaIXZAQXw8KUWc2cuORjOj2UXonJIrSpi6rkgEmjImyyM0SUlGkpwrcfyHpTxFsxC2ZBxJiFBqgr7m3odo3RrHjcEhQmkbGwfsazy3ryuO242PHpyvTLjB1uFgY4-11xChGULELYRg3yFa7zC4Ctvdzu8zPg9UOeC6d3qPocF10_vOOjMqRyKcoZMammBmv3uKXu7vnhePyXL18LS4XSbrlIqYGMY5ZKLKdQZVzbUQOhdcQmWELklFS8UzDTlIzWWqckpLJnNRCUXSPDNg2BRdHHLbzr_1JsRi6_tuLBSKNCOUSyFkNqrkQfVhSl8HbY3Tpmg7u4NuKMafCUaVzNSIGFnY-HPgwvcujtbL_1vZN39Eg14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501486685</pqid></control><display><type>article</type><title>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Rui-Ting ; Wu, Lijun ; Liu, Shujie ; Hu, Kan ; Liu, Xianhu ; Zhang, Jun ; Wang, Lei</creator><creatorcontrib>Gao, Rui-Ting ; Wu, Lijun ; Liu, Shujie ; Hu, Kan ; Liu, Xianhu ; Zhang, Jun ; Wang, Lei</creatorcontrib><description>In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta12338b</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Active sites ; Additives ; Anions ; Bismuth oxides ; Bonding strength ; Catalysts ; Charge transport ; Chemical bonds ; Chemical evolution ; Chemistry ; Chemistry, Physical ; Composition ; Electrodes ; Electrolytes ; Energy & Fuels ; Etching ; Fluorine ; Immobilization ; Iron ; Materials Science ; Materials Science, Multidisciplinary ; Passivity ; Photoanodes ; Physical Sciences ; Regeneration ; Science & Technology ; Stability ; Technology ; Tuning ; Vanadates ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (10), p.6298-6305</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000631985900030</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-g216t-e344a56d7c5adf4c66c7648ade6cb0d1b945ca7a8c4829711b3876d690275eae3</cites><orcidid>0000-0002-4975-3586 ; 0000-0002-7140-7305 ; 0000-0001-7449-2763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Rui-Ting</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Liu, Shujie</creatorcontrib><creatorcontrib>Hu, Kan</creatorcontrib><creatorcontrib>Liu, Xianhu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J MATER CHEM A</addtitle><description>In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems.</description><subject>Active sites</subject><subject>Additives</subject><subject>Anions</subject><subject>Bismuth oxides</subject><subject>Bonding strength</subject><subject>Catalysts</subject><subject>Charge transport</subject><subject>Chemical bonds</subject><subject>Chemical evolution</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Composition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy & Fuels</subject><subject>Etching</subject><subject>Fluorine</subject><subject>Immobilization</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Passivity</subject><subject>Photoanodes</subject><subject>Physical Sciences</subject><subject>Regeneration</subject><subject>Science & Technology</subject><subject>Stability</subject><subject>Technology</subject><subject>Tuning</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNUMtOwzAQtBBIVKUXvsASRxSwY8exudGKl1SpF-AabRyndZXaIXZAQXw8KUWc2cuORjOj2UXonJIrSpi6rkgEmjImyyM0SUlGkpwrcfyHpTxFsxC2ZBxJiFBqgr7m3odo3RrHjcEhQmkbGwfsazy3ryuO242PHpyvTLjB1uFgY4-11xChGULELYRg3yFa7zC4Ctvdzu8zPg9UOeC6d3qPocF10_vOOjMqRyKcoZMammBmv3uKXu7vnhePyXL18LS4XSbrlIqYGMY5ZKLKdQZVzbUQOhdcQmWELklFS8UzDTlIzWWqckpLJnNRCUXSPDNg2BRdHHLbzr_1JsRi6_tuLBSKNCOUSyFkNqrkQfVhSl8HbY3Tpmg7u4NuKMafCUaVzNSIGFnY-HPgwvcujtbL_1vZN39Eg14</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Gao, Rui-Ting</creator><creator>Wu, Lijun</creator><creator>Liu, Shujie</creator><creator>Hu, Kan</creator><creator>Liu, Xianhu</creator><creator>Zhang, Jun</creator><creator>Wang, Lei</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4975-3586</orcidid><orcidid>https://orcid.org/0000-0002-7140-7305</orcidid><orcidid>https://orcid.org/0000-0001-7449-2763</orcidid></search><sort><creationdate>20210101</creationdate><title>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</title><author>Gao, Rui-Ting ; Wu, Lijun ; Liu, Shujie ; Hu, Kan ; Liu, Xianhu ; Zhang, Jun ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g216t-e344a56d7c5adf4c66c7648ade6cb0d1b945ca7a8c4829711b3876d690275eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active sites</topic><topic>Additives</topic><topic>Anions</topic><topic>Bismuth oxides</topic><topic>Bonding strength</topic><topic>Catalysts</topic><topic>Charge transport</topic><topic>Chemical bonds</topic><topic>Chemical evolution</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Composition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy & Fuels</topic><topic>Etching</topic><topic>Fluorine</topic><topic>Immobilization</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Passivity</topic><topic>Photoanodes</topic><topic>Physical Sciences</topic><topic>Regeneration</topic><topic>Science & Technology</topic><topic>Stability</topic><topic>Technology</topic><topic>Tuning</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Rui-Ting</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Liu, Shujie</creatorcontrib><creatorcontrib>Hu, Kan</creatorcontrib><creatorcontrib>Liu, Xianhu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Rui-Ting</au><au>Wu, Lijun</au><au>Liu, Shujie</au><au>Hu, Kan</au><au>Liu, Xianhu</au><au>Zhang, Jun</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><stitle>J MATER CHEM A</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>10</issue><spage>6298</spage><epage>6305</epage><pages>6298-6305</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d0ta12338b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4975-3586</orcidid><orcidid>https://orcid.org/0000-0002-7140-7305</orcidid><orcidid>https://orcid.org/0000-0001-7449-2763</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (10), p.6298-6305 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2501486685 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Active sites Additives Anions Bismuth oxides Bonding strength Catalysts Charge transport Chemical bonds Chemical evolution Chemistry Chemistry, Physical Composition Electrodes Electrolytes Energy & Fuels Etching Fluorine Immobilization Iron Materials Science Materials Science, Multidisciplinary Passivity Photoanodes Physical Sciences Regeneration Science & Technology Stability Technology Tuning Vanadates Water splitting |
title | Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20stability%20of%20BiVO4%20photoanodes:%20in%20situ%20cocatalyst%20passivation%20and%20immobilization%20by%20functional%20fluorine%20anions&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Rui-Ting&rft.date=2021-01-01&rft.volume=9&rft.issue=10&rft.spage=6298&rft.epage=6305&rft.pages=6298-6305&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta12338b&rft_dat=%3Cproquest_webof%3E2501486685%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501486685&rft_id=info:pmid/&rfr_iscdi=true |