Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions

In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (10), p.6298-6305
Hauptverfasser: Gao, Rui-Ting, Wu, Lijun, Liu, Shujie, Hu, Kan, Liu, Xianhu, Zhang, Jun, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6305
container_issue 10
container_start_page 6298
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Gao, Rui-Ting
Wu, Lijun
Liu, Shujie
Hu, Kan
Liu, Xianhu
Zhang, Jun
Wang, Lei
description In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems.
doi_str_mv 10.1039/d0ta12338b
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2501486685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501486685</sourcerecordid><originalsourceid>FETCH-LOGICAL-g216t-e344a56d7c5adf4c66c7648ade6cb0d1b945ca7a8c4829711b3876d690275eae3</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIVKUXvsASRxSwY8exudGKl1SpF-AabRyndZXaIXZAQXw8KUWc2cuORjOj2UXonJIrSpi6rkgEmjImyyM0SUlGkpwrcfyHpTxFsxC2ZBxJiFBqgr7m3odo3RrHjcEhQmkbGwfsazy3ryuO242PHpyvTLjB1uFgY4-11xChGULELYRg3yFa7zC4Ctvdzu8zPg9UOeC6d3qPocF10_vOOjMqRyKcoZMammBmv3uKXu7vnhePyXL18LS4XSbrlIqYGMY5ZKLKdQZVzbUQOhdcQmWELklFS8UzDTlIzWWqckpLJnNRCUXSPDNg2BRdHHLbzr_1JsRi6_tuLBSKNCOUSyFkNqrkQfVhSl8HbY3Tpmg7u4NuKMafCUaVzNSIGFnY-HPgwvcujtbL_1vZN39Eg14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501486685</pqid></control><display><type>article</type><title>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Rui-Ting ; Wu, Lijun ; Liu, Shujie ; Hu, Kan ; Liu, Xianhu ; Zhang, Jun ; Wang, Lei</creator><creatorcontrib>Gao, Rui-Ting ; Wu, Lijun ; Liu, Shujie ; Hu, Kan ; Liu, Xianhu ; Zhang, Jun ; Wang, Lei</creatorcontrib><description>In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta12338b</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Active sites ; Additives ; Anions ; Bismuth oxides ; Bonding strength ; Catalysts ; Charge transport ; Chemical bonds ; Chemical evolution ; Chemistry ; Chemistry, Physical ; Composition ; Electrodes ; Electrolytes ; Energy &amp; Fuels ; Etching ; Fluorine ; Immobilization ; Iron ; Materials Science ; Materials Science, Multidisciplinary ; Passivity ; Photoanodes ; Physical Sciences ; Regeneration ; Science &amp; Technology ; Stability ; Technology ; Tuning ; Vanadates ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (10), p.6298-6305</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000631985900030</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-g216t-e344a56d7c5adf4c66c7648ade6cb0d1b945ca7a8c4829711b3876d690275eae3</cites><orcidid>0000-0002-4975-3586 ; 0000-0002-7140-7305 ; 0000-0001-7449-2763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Rui-Ting</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Liu, Shujie</creatorcontrib><creatorcontrib>Hu, Kan</creatorcontrib><creatorcontrib>Liu, Xianhu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J MATER CHEM A</addtitle><description>In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems.</description><subject>Active sites</subject><subject>Additives</subject><subject>Anions</subject><subject>Bismuth oxides</subject><subject>Bonding strength</subject><subject>Catalysts</subject><subject>Charge transport</subject><subject>Chemical bonds</subject><subject>Chemical evolution</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Composition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy &amp; Fuels</subject><subject>Etching</subject><subject>Fluorine</subject><subject>Immobilization</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Passivity</subject><subject>Photoanodes</subject><subject>Physical Sciences</subject><subject>Regeneration</subject><subject>Science &amp; Technology</subject><subject>Stability</subject><subject>Technology</subject><subject>Tuning</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNUMtOwzAQtBBIVKUXvsASRxSwY8exudGKl1SpF-AabRyndZXaIXZAQXw8KUWc2cuORjOj2UXonJIrSpi6rkgEmjImyyM0SUlGkpwrcfyHpTxFsxC2ZBxJiFBqgr7m3odo3RrHjcEhQmkbGwfsazy3ryuO242PHpyvTLjB1uFgY4-11xChGULELYRg3yFa7zC4Ctvdzu8zPg9UOeC6d3qPocF10_vOOjMqRyKcoZMammBmv3uKXu7vnhePyXL18LS4XSbrlIqYGMY5ZKLKdQZVzbUQOhdcQmWELklFS8UzDTlIzWWqckpLJnNRCUXSPDNg2BRdHHLbzr_1JsRi6_tuLBSKNCOUSyFkNqrkQfVhSl8HbY3Tpmg7u4NuKMafCUaVzNSIGFnY-HPgwvcujtbL_1vZN39Eg14</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Gao, Rui-Ting</creator><creator>Wu, Lijun</creator><creator>Liu, Shujie</creator><creator>Hu, Kan</creator><creator>Liu, Xianhu</creator><creator>Zhang, Jun</creator><creator>Wang, Lei</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4975-3586</orcidid><orcidid>https://orcid.org/0000-0002-7140-7305</orcidid><orcidid>https://orcid.org/0000-0001-7449-2763</orcidid></search><sort><creationdate>20210101</creationdate><title>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</title><author>Gao, Rui-Ting ; Wu, Lijun ; Liu, Shujie ; Hu, Kan ; Liu, Xianhu ; Zhang, Jun ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g216t-e344a56d7c5adf4c66c7648ade6cb0d1b945ca7a8c4829711b3876d690275eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active sites</topic><topic>Additives</topic><topic>Anions</topic><topic>Bismuth oxides</topic><topic>Bonding strength</topic><topic>Catalysts</topic><topic>Charge transport</topic><topic>Chemical bonds</topic><topic>Chemical evolution</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Composition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy &amp; Fuels</topic><topic>Etching</topic><topic>Fluorine</topic><topic>Immobilization</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Passivity</topic><topic>Photoanodes</topic><topic>Physical Sciences</topic><topic>Regeneration</topic><topic>Science &amp; Technology</topic><topic>Stability</topic><topic>Technology</topic><topic>Tuning</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Rui-Ting</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Liu, Shujie</creatorcontrib><creatorcontrib>Hu, Kan</creatorcontrib><creatorcontrib>Liu, Xianhu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Rui-Ting</au><au>Wu, Lijun</au><au>Liu, Shujie</au><au>Hu, Kan</au><au>Liu, Xianhu</au><au>Zhang, Jun</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><stitle>J MATER CHEM A</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>10</issue><spage>6298</spage><epage>6305</epage><pages>6298-6305</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In photoelectrochemical water splitting, little attention is paid to the volume change of the cocatalyst on photoelectrodes during long-term testing, which is one of the important reasons for the decay of stability of photocorroded electrodes. Tuning the electrolyte composition (e.g. Fe2+ additives) has been demonstrated to be an efficient approach for in situ cocatalyst regeneration and photocorrosion inhibition. Photoelectrode stabilization by surface passivation is adopted as the most vital approach for obtaining high stability. Herein, we challenge the traditional strategy to in situ passivate the surface states with a "surface-protected etching" process for tuning the electrolyte composition via employing F- anions in borate buffer. The F- species could incorporate into the Co-catalyst to activate catalytic sites for cocatalyst reconstruction, improving the charge transport of BiVO4. More importantly, the dynamic migration of F- anions with strong chemical bonds suppresses the volume change of the cocatalyst, passivates the surface states of BiVO4/cocatalyst, and minimizes the dissolution of BiVO4 over long-term measurement, which further inhibits the photocorrosion of electrodes. The resulting photoanode allows stable oxygen evolution over 100 h at a low potential of 0.6 V-RHE, which is superior to the traditional NiOOH/FeOOH double layer cocatalyst. This finding on in situ etching and passivation engineering shines a light on boosting the stability of photoelectrodes in such electrolyte systems.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d0ta12338b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4975-3586</orcidid><orcidid>https://orcid.org/0000-0002-7140-7305</orcidid><orcidid>https://orcid.org/0000-0001-7449-2763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (10), p.6298-6305
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2501486685
source Royal Society Of Chemistry Journals 2008-
subjects Active sites
Additives
Anions
Bismuth oxides
Bonding strength
Catalysts
Charge transport
Chemical bonds
Chemical evolution
Chemistry
Chemistry, Physical
Composition
Electrodes
Electrolytes
Energy & Fuels
Etching
Fluorine
Immobilization
Iron
Materials Science
Materials Science, Multidisciplinary
Passivity
Photoanodes
Physical Sciences
Regeneration
Science & Technology
Stability
Technology
Tuning
Vanadates
Water splitting
title Boosting the stability of BiVO4 photoanodes: in situ cocatalyst passivation and immobilization by functional fluorine anions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20stability%20of%20BiVO4%20photoanodes:%20in%20situ%20cocatalyst%20passivation%20and%20immobilization%20by%20functional%20fluorine%20anions&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Rui-Ting&rft.date=2021-01-01&rft.volume=9&rft.issue=10&rft.spage=6298&rft.epage=6305&rft.pages=6298-6305&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta12338b&rft_dat=%3Cproquest_webof%3E2501486685%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501486685&rft_id=info:pmid/&rfr_iscdi=true