Low concentrations of Cu2+ in synthetic nutrient containing wastewater inhibit MgCO3-to-struvite transformation

Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science water research & technology 2021-03, Vol.7 (3), p.521-534
Hauptverfasser: Barčauskaitė, Karolina, Drapanauskaitė, Donata, Silva, Manoj, Murzin, Vadim, Doyeni, Modupe, Urbonavicius, Marius, Williams, Clinton F, Supronienė, Skaidrė, Baltrusaitis, Jonas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 3
container_start_page 521
container_title Environmental science water research & technology
container_volume 7
creator Barčauskaitė, Karolina
Drapanauskaitė, Donata
Silva, Manoj
Murzin, Vadim
Doyeni, Modupe
Urbonavicius, Marius
Williams, Clinton F
Supronienė, Skaidrė
Baltrusaitis, Jonas
description Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simulated N and P containing wastewater solution using widely abundant low solubility magnesite (MgCO3) particles in the presence of common transition metal ions, such as zinc (Zn2+) or copper (Cu2+). We show that up to 100 ppm Zn2+ from the simulated wastewater can be incorporated into the struvite lattice as isolated distorted Zn2+ while even at very low concentrations of ∼5 ppm Cu2+ ions almost completely inhibit struvite crystal formation. The resulting solid precipitate distinctly affects soil microbial biomass carbon and soil dehydrogenase enzyme activity. These results show a cautionary case where abundant natural mineral MgCO3 exhibits very different chemistry in Cu2+ containing simulated wastewater and does not readily adsorb or retain NH4+ and PO43− ions, unlike less sustainable but more water-soluble magnesium sources, such as MgCl2, at the equivalent [Mg2+] : [NH4+] : [PO43−] molar ratio of 1.4 : 1 : 1.
doi_str_mv 10.1039/d0ew01035a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2501479566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501479566</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-f07aa1511d6038ce258877f9aba68a1a14e6e984be393cbcda816400e0bd40d13</originalsourceid><addsrcrecordid>eNo9j0tLxDAUhYMoOIyz8RcEXEr13qZN06UUX1CZja6HtE1nMmgyJrcW_73xgat74Hx8h8vYOcIVgqivBzAzpFTqI7bIoRQZFlgf_2eAU7aKcQ8AKEWqxIL51s-89643joIm613kfuTNlF9y63j8dLQzZHvuJgo2Qd8waeus2_JZRzKzJhMSu7OdJf60bdYiI59FCtOHJcOT1sXRh7cf-xk7GfVrNKu_u2Qvd7fPzUPWru8fm5s2OyAKykaotMYScZAgVG_yUqmqGmvdaak0aiyMNLUqOiNq0Xf9oBXK9KCBbihgQLFkF7_eQ_Dvk4m02fspuDS5yUvAoqpLKcUXPe5dfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501479566</pqid></control><display><type>article</type><title>Low concentrations of Cu2+ in synthetic nutrient containing wastewater inhibit MgCO3-to-struvite transformation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Barčauskaitė, Karolina ; Drapanauskaitė, Donata ; Silva, Manoj ; Murzin, Vadim ; Doyeni, Modupe ; Urbonavicius, Marius ; Williams, Clinton F ; Supronienė, Skaidrė ; Baltrusaitis, Jonas</creator><creatorcontrib>Barčauskaitė, Karolina ; Drapanauskaitė, Donata ; Silva, Manoj ; Murzin, Vadim ; Doyeni, Modupe ; Urbonavicius, Marius ; Williams, Clinton F ; Supronienė, Skaidrė ; Baltrusaitis, Jonas</creatorcontrib><description>Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simulated N and P containing wastewater solution using widely abundant low solubility magnesite (MgCO3) particles in the presence of common transition metal ions, such as zinc (Zn2+) or copper (Cu2+). We show that up to 100 ppm Zn2+ from the simulated wastewater can be incorporated into the struvite lattice as isolated distorted Zn2+ while even at very low concentrations of ∼5 ppm Cu2+ ions almost completely inhibit struvite crystal formation. The resulting solid precipitate distinctly affects soil microbial biomass carbon and soil dehydrogenase enzyme activity. These results show a cautionary case where abundant natural mineral MgCO3 exhibits very different chemistry in Cu2+ containing simulated wastewater and does not readily adsorb or retain NH4+ and PO43− ions, unlike less sustainable but more water-soluble magnesium sources, such as MgCl2, at the equivalent [Mg2+] : [NH4+] : [PO43−] molar ratio of 1.4 : 1 : 1.</description><identifier>ISSN: 2053-1400</identifier><identifier>EISSN: 2053-1419</identifier><identifier>DOI: 10.1039/d0ew01035a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical composition ; Copper ; Enzymatic activity ; Enzyme activity ; Heavy metals ; Kinetics ; Low concentrations ; Magnesite ; Magnesium ; Magnesium carbonate ; Magnesium chloride ; Metal ions ; Microorganisms ; Mineral nutrients ; Nitrogen ; Nutrient concentrations ; Phosphorus ; Reaction kinetics ; Simulation ; Soil ; Soils ; Struvite ; Sustainability ; Sustainable development ; Transition metals ; Wastewater ; Zinc</subject><ispartof>Environmental science water research &amp; technology, 2021-03, Vol.7 (3), p.521-534</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Barčauskaitė, Karolina</creatorcontrib><creatorcontrib>Drapanauskaitė, Donata</creatorcontrib><creatorcontrib>Silva, Manoj</creatorcontrib><creatorcontrib>Murzin, Vadim</creatorcontrib><creatorcontrib>Doyeni, Modupe</creatorcontrib><creatorcontrib>Urbonavicius, Marius</creatorcontrib><creatorcontrib>Williams, Clinton F</creatorcontrib><creatorcontrib>Supronienė, Skaidrė</creatorcontrib><creatorcontrib>Baltrusaitis, Jonas</creatorcontrib><title>Low concentrations of Cu2+ in synthetic nutrient containing wastewater inhibit MgCO3-to-struvite transformation</title><title>Environmental science water research &amp; technology</title><description>Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simulated N and P containing wastewater solution using widely abundant low solubility magnesite (MgCO3) particles in the presence of common transition metal ions, such as zinc (Zn2+) or copper (Cu2+). We show that up to 100 ppm Zn2+ from the simulated wastewater can be incorporated into the struvite lattice as isolated distorted Zn2+ while even at very low concentrations of ∼5 ppm Cu2+ ions almost completely inhibit struvite crystal formation. The resulting solid precipitate distinctly affects soil microbial biomass carbon and soil dehydrogenase enzyme activity. These results show a cautionary case where abundant natural mineral MgCO3 exhibits very different chemistry in Cu2+ containing simulated wastewater and does not readily adsorb or retain NH4+ and PO43− ions, unlike less sustainable but more water-soluble magnesium sources, such as MgCl2, at the equivalent [Mg2+] : [NH4+] : [PO43−] molar ratio of 1.4 : 1 : 1.</description><subject>Chemical composition</subject><subject>Copper</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Heavy metals</subject><subject>Kinetics</subject><subject>Low concentrations</subject><subject>Magnesite</subject><subject>Magnesium</subject><subject>Magnesium carbonate</subject><subject>Magnesium chloride</subject><subject>Metal ions</subject><subject>Microorganisms</subject><subject>Mineral nutrients</subject><subject>Nitrogen</subject><subject>Nutrient concentrations</subject><subject>Phosphorus</subject><subject>Reaction kinetics</subject><subject>Simulation</subject><subject>Soil</subject><subject>Soils</subject><subject>Struvite</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Transition metals</subject><subject>Wastewater</subject><subject>Zinc</subject><issn>2053-1400</issn><issn>2053-1419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLxDAUhYMoOIyz8RcEXEr13qZN06UUX1CZja6HtE1nMmgyJrcW_73xgat74Hx8h8vYOcIVgqivBzAzpFTqI7bIoRQZFlgf_2eAU7aKcQ8AKEWqxIL51s-89643joIm613kfuTNlF9y63j8dLQzZHvuJgo2Qd8waeus2_JZRzKzJhMSu7OdJf60bdYiI59FCtOHJcOT1sXRh7cf-xk7GfVrNKu_u2Qvd7fPzUPWru8fm5s2OyAKykaotMYScZAgVG_yUqmqGmvdaak0aiyMNLUqOiNq0Xf9oBXK9KCBbihgQLFkF7_eQ_Dvk4m02fspuDS5yUvAoqpLKcUXPe5dfA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Barčauskaitė, Karolina</creator><creator>Drapanauskaitė, Donata</creator><creator>Silva, Manoj</creator><creator>Murzin, Vadim</creator><creator>Doyeni, Modupe</creator><creator>Urbonavicius, Marius</creator><creator>Williams, Clinton F</creator><creator>Supronienė, Skaidrė</creator><creator>Baltrusaitis, Jonas</creator><general>Royal Society of Chemistry</general><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20210301</creationdate><title>Low concentrations of Cu2+ in synthetic nutrient containing wastewater inhibit MgCO3-to-struvite transformation</title><author>Barčauskaitė, Karolina ; Drapanauskaitė, Donata ; Silva, Manoj ; Murzin, Vadim ; Doyeni, Modupe ; Urbonavicius, Marius ; Williams, Clinton F ; Supronienė, Skaidrė ; Baltrusaitis, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-f07aa1511d6038ce258877f9aba68a1a14e6e984be393cbcda816400e0bd40d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical composition</topic><topic>Copper</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Heavy metals</topic><topic>Kinetics</topic><topic>Low concentrations</topic><topic>Magnesite</topic><topic>Magnesium</topic><topic>Magnesium carbonate</topic><topic>Magnesium chloride</topic><topic>Metal ions</topic><topic>Microorganisms</topic><topic>Mineral nutrients</topic><topic>Nitrogen</topic><topic>Nutrient concentrations</topic><topic>Phosphorus</topic><topic>Reaction kinetics</topic><topic>Simulation</topic><topic>Soil</topic><topic>Soils</topic><topic>Struvite</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Transition metals</topic><topic>Wastewater</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barčauskaitė, Karolina</creatorcontrib><creatorcontrib>Drapanauskaitė, Donata</creatorcontrib><creatorcontrib>Silva, Manoj</creatorcontrib><creatorcontrib>Murzin, Vadim</creatorcontrib><creatorcontrib>Doyeni, Modupe</creatorcontrib><creatorcontrib>Urbonavicius, Marius</creatorcontrib><creatorcontrib>Williams, Clinton F</creatorcontrib><creatorcontrib>Supronienė, Skaidrė</creatorcontrib><creatorcontrib>Baltrusaitis, Jonas</creatorcontrib><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science water research &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barčauskaitė, Karolina</au><au>Drapanauskaitė, Donata</au><au>Silva, Manoj</au><au>Murzin, Vadim</au><au>Doyeni, Modupe</au><au>Urbonavicius, Marius</au><au>Williams, Clinton F</au><au>Supronienė, Skaidrė</au><au>Baltrusaitis, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low concentrations of Cu2+ in synthetic nutrient containing wastewater inhibit MgCO3-to-struvite transformation</atitle><jtitle>Environmental science water research &amp; technology</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>7</volume><issue>3</issue><spage>521</spage><epage>534</epage><pages>521-534</pages><issn>2053-1400</issn><eissn>2053-1419</eissn><abstract>Simultaneous major nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is key to achieving food–energy–water sustainable development. In this work, we elucidate the reaction kinetics, crystalline structure and chemical composition of the resulting solid precipitate obtained from simulated N and P containing wastewater solution using widely abundant low solubility magnesite (MgCO3) particles in the presence of common transition metal ions, such as zinc (Zn2+) or copper (Cu2+). We show that up to 100 ppm Zn2+ from the simulated wastewater can be incorporated into the struvite lattice as isolated distorted Zn2+ while even at very low concentrations of ∼5 ppm Cu2+ ions almost completely inhibit struvite crystal formation. The resulting solid precipitate distinctly affects soil microbial biomass carbon and soil dehydrogenase enzyme activity. These results show a cautionary case where abundant natural mineral MgCO3 exhibits very different chemistry in Cu2+ containing simulated wastewater and does not readily adsorb or retain NH4+ and PO43− ions, unlike less sustainable but more water-soluble magnesium sources, such as MgCl2, at the equivalent [Mg2+] : [NH4+] : [PO43−] molar ratio of 1.4 : 1 : 1.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ew01035a</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2053-1400
ispartof Environmental science water research & technology, 2021-03, Vol.7 (3), p.521-534
issn 2053-1400
2053-1419
language eng
recordid cdi_proquest_journals_2501479566
source Royal Society Of Chemistry Journals 2008-
subjects Chemical composition
Copper
Enzymatic activity
Enzyme activity
Heavy metals
Kinetics
Low concentrations
Magnesite
Magnesium
Magnesium carbonate
Magnesium chloride
Metal ions
Microorganisms
Mineral nutrients
Nitrogen
Nutrient concentrations
Phosphorus
Reaction kinetics
Simulation
Soil
Soils
Struvite
Sustainability
Sustainable development
Transition metals
Wastewater
Zinc
title Low concentrations of Cu2+ in synthetic nutrient containing wastewater inhibit MgCO3-to-struvite transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20concentrations%20of%20Cu2+%20in%20synthetic%20nutrient%20containing%20wastewater%20inhibit%20MgCO3-to-struvite%20transformation&rft.jtitle=Environmental%20science%20water%20research%20&%20technology&rft.au=Bar%C4%8Dauskait%C4%97,%20Karolina&rft.date=2021-03-01&rft.volume=7&rft.issue=3&rft.spage=521&rft.epage=534&rft.pages=521-534&rft.issn=2053-1400&rft.eissn=2053-1419&rft_id=info:doi/10.1039/d0ew01035a&rft_dat=%3Cproquest%3E2501479566%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501479566&rft_id=info:pmid/&rfr_iscdi=true