Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites
The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavi...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2021-03, Vol.232 (3), p.983-1003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1003 |
---|---|
container_issue | 3 |
container_start_page | 983 |
container_title | Acta mechanica |
container_volume | 232 |
creator | Shen, Kuo-Jung Lin, Chien-hong |
description | The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs. |
doi_str_mv | 10.1007/s00707-020-02880-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2501358042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656116479</galeid><sourcerecordid>A656116479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</originalsourceid><addsrcrecordid>eNp9UU1rAyEQldJC048_0NNCz5uq-6XHEPoFKb20Z3F1TA27ulVTyL-v6RZ6K4MzqO-9GeYhdEPwkmDc3cWccFdiivNhDJfsBC1IS3jZ8qo7RQuMMSkb3uFzdBHjLt9oV5MFsi9WBT-C-pDOKjkUo9cwWLctvCmSHaHUMIHT4FIhnS6cd_kXZCgCxMm7CPGIHOXWQfIxBauS_YJi8sNhhFAoP04-2gTxCp0ZOUS4_q2X6P3h_m39VG5eH5_Xq02pqoalsiISpGJtxbTGfWcI07yuaV9z2msje4MZdLWmFVDaG0MZbxmpuTZUU644ry7R7aw7Bf-5h5jEzu-Dyy0FbTDJTXBNM2o5o7ZyAGGd8SlIlUPDaJV3YGx-X7VNS0hbd0dZOhPyumIMYMQU7CjDQRAsjh6I2QORPRA_HgiWSdVMihnsthD-ZvmH9Q2uL4v8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501358042</pqid></control><display><type>article</type><title>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</title><source>SpringerLink Journals</source><creator>Shen, Kuo-Jung ; Lin, Chien-hong</creator><creatorcontrib>Shen, Kuo-Jung ; Lin, Chien-hong</creatorcontrib><description>The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02880-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Analysis ; Classical and Continuum Physics ; Constitutive relationships ; Continuous fiber composites ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flux density ; Heat and Mass Transfer ; Iterative methods ; Loading rate ; Magnetic flux ; Magnetism ; Magnetostriction ; Nonlinear response ; Nonlinearity ; Original Paper ; Particulate composites ; Polymer industry ; Polymer matrix composites ; Polymeric composites ; Polymers ; Solid Mechanics ; Theoretical and Applied Mechanics ; Time dependence ; Vibration</subject><ispartof>Acta mechanica, 2021-03, Vol.232 (3), p.983-1003</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</citedby><cites>FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</cites><orcidid>0000-0002-5047-4533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-020-02880-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-020-02880-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shen, Kuo-Jung</creatorcontrib><creatorcontrib>Lin, Chien-hong</creatorcontrib><title>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Constitutive relationships</subject><subject>Continuous fiber composites</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flux density</subject><subject>Heat and Mass Transfer</subject><subject>Iterative methods</subject><subject>Loading rate</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Magnetostriction</subject><subject>Nonlinear response</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Particulate composites</subject><subject>Polymer industry</subject><subject>Polymer matrix composites</subject><subject>Polymeric composites</subject><subject>Polymers</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time dependence</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UU1rAyEQldJC048_0NNCz5uq-6XHEPoFKb20Z3F1TA27ulVTyL-v6RZ6K4MzqO-9GeYhdEPwkmDc3cWccFdiivNhDJfsBC1IS3jZ8qo7RQuMMSkb3uFzdBHjLt9oV5MFsi9WBT-C-pDOKjkUo9cwWLctvCmSHaHUMIHT4FIhnS6cd_kXZCgCxMm7CPGIHOXWQfIxBauS_YJi8sNhhFAoP04-2gTxCp0ZOUS4_q2X6P3h_m39VG5eH5_Xq02pqoalsiISpGJtxbTGfWcI07yuaV9z2msje4MZdLWmFVDaG0MZbxmpuTZUU644ry7R7aw7Bf-5h5jEzu-Dyy0FbTDJTXBNM2o5o7ZyAGGd8SlIlUPDaJV3YGx-X7VNS0hbd0dZOhPyumIMYMQU7CjDQRAsjh6I2QORPRA_HgiWSdVMihnsthD-ZvmH9Q2uL4v8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Shen, Kuo-Jung</creator><creator>Lin, Chien-hong</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5047-4533</orcidid></search><sort><creationdate>20210301</creationdate><title>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</title><author>Shen, Kuo-Jung ; Lin, Chien-hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Constitutive relationships</topic><topic>Continuous fiber composites</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flux density</topic><topic>Heat and Mass Transfer</topic><topic>Iterative methods</topic><topic>Loading rate</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Magnetostriction</topic><topic>Nonlinear response</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Particulate composites</topic><topic>Polymer industry</topic><topic>Polymer matrix composites</topic><topic>Polymeric composites</topic><topic>Polymers</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time dependence</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Kuo-Jung</creatorcontrib><creatorcontrib>Lin, Chien-hong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Kuo-Jung</au><au>Lin, Chien-hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>232</volume><issue>3</issue><spage>983</spage><epage>1003</epage><pages>983-1003</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02880-8</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5047-4533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2021-03, Vol.232 (3), p.983-1003 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2501358042 |
source | SpringerLink Journals |
subjects | Algorithms Analysis Classical and Continuum Physics Constitutive relationships Continuous fiber composites Control Dynamical Systems Engineering Engineering Fluid Dynamics Engineering Thermodynamics Flux density Heat and Mass Transfer Iterative methods Loading rate Magnetic flux Magnetism Magnetostriction Nonlinear response Nonlinearity Original Paper Particulate composites Polymer industry Polymer matrix composites Polymeric composites Polymers Solid Mechanics Theoretical and Applied Mechanics Time dependence Vibration |
title | Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20of%20time-dependent%20and%20nonlinear%20responses%20of%20magnetostrictive%20polymer%20composites&rft.jtitle=Acta%20mechanica&rft.au=Shen,%20Kuo-Jung&rft.date=2021-03-01&rft.volume=232&rft.issue=3&rft.spage=983&rft.epage=1003&rft.pages=983-1003&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02880-8&rft_dat=%3Cgale_proqu%3EA656116479%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501358042&rft_id=info:pmid/&rft_galeid=A656116479&rfr_iscdi=true |