Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites

The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2021-03, Vol.232 (3), p.983-1003
Hauptverfasser: Shen, Kuo-Jung, Lin, Chien-hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1003
container_issue 3
container_start_page 983
container_title Acta mechanica
container_volume 232
creator Shen, Kuo-Jung
Lin, Chien-hong
description The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.
doi_str_mv 10.1007/s00707-020-02880-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2501358042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656116479</galeid><sourcerecordid>A656116479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</originalsourceid><addsrcrecordid>eNp9UU1rAyEQldJC048_0NNCz5uq-6XHEPoFKb20Z3F1TA27ulVTyL-v6RZ6K4MzqO-9GeYhdEPwkmDc3cWccFdiivNhDJfsBC1IS3jZ8qo7RQuMMSkb3uFzdBHjLt9oV5MFsi9WBT-C-pDOKjkUo9cwWLctvCmSHaHUMIHT4FIhnS6cd_kXZCgCxMm7CPGIHOXWQfIxBauS_YJi8sNhhFAoP04-2gTxCp0ZOUS4_q2X6P3h_m39VG5eH5_Xq02pqoalsiISpGJtxbTGfWcI07yuaV9z2msje4MZdLWmFVDaG0MZbxmpuTZUU644ry7R7aw7Bf-5h5jEzu-Dyy0FbTDJTXBNM2o5o7ZyAGGd8SlIlUPDaJV3YGx-X7VNS0hbd0dZOhPyumIMYMQU7CjDQRAsjh6I2QORPRA_HgiWSdVMihnsthD-ZvmH9Q2uL4v8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501358042</pqid></control><display><type>article</type><title>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</title><source>SpringerLink Journals</source><creator>Shen, Kuo-Jung ; Lin, Chien-hong</creator><creatorcontrib>Shen, Kuo-Jung ; Lin, Chien-hong</creatorcontrib><description>The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-020-02880-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Analysis ; Classical and Continuum Physics ; Constitutive relationships ; Continuous fiber composites ; Control ; Dynamical Systems ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flux density ; Heat and Mass Transfer ; Iterative methods ; Loading rate ; Magnetic flux ; Magnetism ; Magnetostriction ; Nonlinear response ; Nonlinearity ; Original Paper ; Particulate composites ; Polymer industry ; Polymer matrix composites ; Polymeric composites ; Polymers ; Solid Mechanics ; Theoretical and Applied Mechanics ; Time dependence ; Vibration</subject><ispartof>Acta mechanica, 2021-03, Vol.232 (3), p.983-1003</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</citedby><cites>FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</cites><orcidid>0000-0002-5047-4533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-020-02880-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-020-02880-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shen, Kuo-Jung</creatorcontrib><creatorcontrib>Lin, Chien-hong</creatorcontrib><title>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Constitutive relationships</subject><subject>Continuous fiber composites</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flux density</subject><subject>Heat and Mass Transfer</subject><subject>Iterative methods</subject><subject>Loading rate</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Magnetostriction</subject><subject>Nonlinear response</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Particulate composites</subject><subject>Polymer industry</subject><subject>Polymer matrix composites</subject><subject>Polymeric composites</subject><subject>Polymers</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time dependence</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UU1rAyEQldJC048_0NNCz5uq-6XHEPoFKb20Z3F1TA27ulVTyL-v6RZ6K4MzqO-9GeYhdEPwkmDc3cWccFdiivNhDJfsBC1IS3jZ8qo7RQuMMSkb3uFzdBHjLt9oV5MFsi9WBT-C-pDOKjkUo9cwWLctvCmSHaHUMIHT4FIhnS6cd_kXZCgCxMm7CPGIHOXWQfIxBauS_YJi8sNhhFAoP04-2gTxCp0ZOUS4_q2X6P3h_m39VG5eH5_Xq02pqoalsiISpGJtxbTGfWcI07yuaV9z2msje4MZdLWmFVDaG0MZbxmpuTZUU644ry7R7aw7Bf-5h5jEzu-Dyy0FbTDJTXBNM2o5o7ZyAGGd8SlIlUPDaJV3YGx-X7VNS0hbd0dZOhPyumIMYMQU7CjDQRAsjh6I2QORPRA_HgiWSdVMihnsthD-ZvmH9Q2uL4v8</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Shen, Kuo-Jung</creator><creator>Lin, Chien-hong</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5047-4533</orcidid></search><sort><creationdate>20210301</creationdate><title>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</title><author>Shen, Kuo-Jung ; Lin, Chien-hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-31aeac8638dd0b7f18d9442b492bdfabf08e74d23e22bff28968149df2d29c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Constitutive relationships</topic><topic>Continuous fiber composites</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flux density</topic><topic>Heat and Mass Transfer</topic><topic>Iterative methods</topic><topic>Loading rate</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Magnetostriction</topic><topic>Nonlinear response</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Particulate composites</topic><topic>Polymer industry</topic><topic>Polymer matrix composites</topic><topic>Polymeric composites</topic><topic>Polymers</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time dependence</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Kuo-Jung</creatorcontrib><creatorcontrib>Lin, Chien-hong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Kuo-Jung</au><au>Lin, Chien-hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>232</volume><issue>3</issue><spage>983</spage><epage>1003</epage><pages>983-1003</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The overall time-dependent and nonlinear responses of two-phase magnetostrictive polymer composites are obtained by coupling micromechanical analysis for magnetoelastic coupled composites with a time-integration algorithm for thermorheologically complex materials. The nonlinear magnetoelastic behavior is due to large magnetic driving fields while the nonlinear viscoelastic response is associated with stress and temperature. Because of the material nonlinearity of these constituents, linearized constitutive relations are first defined for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. The presented micromechanical formulation is applicable to magnetostrictive composites reinforced by continuous fiber, particle, and lamina reinforcements. The predicted responses of the composites are first validated with the experimental data available in the literature. Numerical results are then presented for the magnetostrictive composites with 1–3, 0–3, and 2–2 connectivity in terms of their strain and magnetic flux density responses. Time-dependent and nonlinear behaviors show the different degrees of the dependency on microstructural geometry, reinforcement volume fraction, environmental temperature, and loading rate of magnetic and mechanical inputs.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-020-02880-8</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5047-4533</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2021-03, Vol.232 (3), p.983-1003
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2501358042
source SpringerLink Journals
subjects Algorithms
Analysis
Classical and Continuum Physics
Constitutive relationships
Continuous fiber composites
Control
Dynamical Systems
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flux density
Heat and Mass Transfer
Iterative methods
Loading rate
Magnetic flux
Magnetism
Magnetostriction
Nonlinear response
Nonlinearity
Original Paper
Particulate composites
Polymer industry
Polymer matrix composites
Polymeric composites
Polymers
Solid Mechanics
Theoretical and Applied Mechanics
Time dependence
Vibration
title Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20of%20time-dependent%20and%20nonlinear%20responses%20of%20magnetostrictive%20polymer%20composites&rft.jtitle=Acta%20mechanica&rft.au=Shen,%20Kuo-Jung&rft.date=2021-03-01&rft.volume=232&rft.issue=3&rft.spage=983&rft.epage=1003&rft.pages=983-1003&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-020-02880-8&rft_dat=%3Cgale_proqu%3EA656116479%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501358042&rft_id=info:pmid/&rft_galeid=A656116479&rfr_iscdi=true