Performance Comparison of Gesture Recognition System Based on Different Classifiers

The hand plays a very important role in our daily life, and the amputees suffer a lot from the loss of hands or upper limbs. Hence, assisting devices are desired urgently. Today, the prosthetic hands based on surface electromyography (sEMG) signals can recognize many hand gestures, but some problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2021-03, Vol.13 (1), p.141-150
Hauptverfasser: Yang, Yikang, Duan, Feng, Ren, Jia, Xue, Jianing, Lv, Yizhi, Zhu, Chi, Yokoi, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1
container_start_page 141
container_title IEEE transactions on cognitive and developmental systems
container_volume 13
creator Yang, Yikang
Duan, Feng
Ren, Jia
Xue, Jianing
Lv, Yizhi
Zhu, Chi
Yokoi, Hiroshi
description The hand plays a very important role in our daily life, and the amputees suffer a lot from the loss of hands or upper limbs. Hence, assisting devices are desired urgently. Today, the prosthetic hands based on surface electromyography (sEMG) signals can recognize many hand gestures, but some problems still exist. To identify more gestures, some recognition systems require multiple electrodes, which are unable to be applied to the amputees with less residual muscles. Meanwhile, better computing performance is required as the number of electrodes increases, which is difficult to be applied to the real-time embedded systems. In this article, we aim to recognize six hand gestures by using sEMG sensors as little as possible. To realize this goal, we compare the accuracy and processing time of different feature extraction and classification methods offline, and the results indicate that the combination of time-domain features and backpropagation neural network has better performance. In total, nine subjects participated in the offline experiments, and the accuracy is up to 95.46% by employing two sEMG sensors to recognize six hand gestures.
doi_str_mv 10.1109/TCDS.2020.2969297
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2501318203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8968323</ieee_id><sourcerecordid>2501318203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-61e2c851ef499e1d2980eb6eea01829bc15a1039a3d0a6fd8c2f94d1b3149ee3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gHhZ8Lw1k2x3M0fdahUKiu09pLsTSeluarI99NubUulp_vDem-HH2D3wKQDHp3U9X00FF3wqsESB1RUbCVlhrlDi9aUX_JZNYtxyzqGUlSqqEVt9UbA-dKZvKKt9tzfBRd9n3mYLisMhUPZNjf_p3eDSenWMA3XZi4nUZmmeO2spUD9k9c7E6KyjEO_YjTW7SJP_Ombrt9d1_Z4vPxcf9fMybwTKIS-BRKNmQLZAJGgFKk6bkshwUAI3DcwMcIlGttyUtlWNsFi0sJFQIJEcs8dz7D7430N6Vm_9IfTpohYzDjKFcJlUcFY1wccYyOp9cJ0JRw1cn-jpEz19oqf_6SXPw9njiOiiV1gqKaT8A6Zha38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501318203</pqid></control><display><type>article</type><title>Performance Comparison of Gesture Recognition System Based on Different Classifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Yikang ; Duan, Feng ; Ren, Jia ; Xue, Jianing ; Lv, Yizhi ; Zhu, Chi ; Yokoi, Hiroshi</creator><creatorcontrib>Yang, Yikang ; Duan, Feng ; Ren, Jia ; Xue, Jianing ; Lv, Yizhi ; Zhu, Chi ; Yokoi, Hiroshi</creatorcontrib><description>The hand plays a very important role in our daily life, and the amputees suffer a lot from the loss of hands or upper limbs. Hence, assisting devices are desired urgently. Today, the prosthetic hands based on surface electromyography (sEMG) signals can recognize many hand gestures, but some problems still exist. To identify more gestures, some recognition systems require multiple electrodes, which are unable to be applied to the amputees with less residual muscles. Meanwhile, better computing performance is required as the number of electrodes increases, which is difficult to be applied to the real-time embedded systems. In this article, we aim to recognize six hand gestures by using sEMG sensors as little as possible. To realize this goal, we compare the accuracy and processing time of different feature extraction and classification methods offline, and the results indicate that the combination of time-domain features and backpropagation neural network has better performance. In total, nine subjects participated in the offline experiments, and the accuracy is up to 95.46% by employing two sEMG sensors to recognize six hand gestures.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2020.2969297</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive boosting (AdaBoost) ; Back propagation ; Back propagation networks ; backpropagation neural network (BPNN) ; Electrodes ; Embedded systems ; Feature extraction ; Frequency-domain analysis ; Gesture recognition ; Muscles ; Neural networks ; Prostheses ; Sensors ; surface electromyography (sEMG) ; time-domain analysis</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2021-03, Vol.13 (1), p.141-150</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-61e2c851ef499e1d2980eb6eea01829bc15a1039a3d0a6fd8c2f94d1b3149ee3</citedby><cites>FETCH-LOGICAL-c293t-61e2c851ef499e1d2980eb6eea01829bc15a1039a3d0a6fd8c2f94d1b3149ee3</cites><orcidid>0000-0002-0719-7075 ; 0000-0003-4637-0472 ; 0000-0002-2179-2460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8968323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8968323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Yikang</creatorcontrib><creatorcontrib>Duan, Feng</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><creatorcontrib>Xue, Jianing</creatorcontrib><creatorcontrib>Lv, Yizhi</creatorcontrib><creatorcontrib>Zhu, Chi</creatorcontrib><creatorcontrib>Yokoi, Hiroshi</creatorcontrib><title>Performance Comparison of Gesture Recognition System Based on Different Classifiers</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>The hand plays a very important role in our daily life, and the amputees suffer a lot from the loss of hands or upper limbs. Hence, assisting devices are desired urgently. Today, the prosthetic hands based on surface electromyography (sEMG) signals can recognize many hand gestures, but some problems still exist. To identify more gestures, some recognition systems require multiple electrodes, which are unable to be applied to the amputees with less residual muscles. Meanwhile, better computing performance is required as the number of electrodes increases, which is difficult to be applied to the real-time embedded systems. In this article, we aim to recognize six hand gestures by using sEMG sensors as little as possible. To realize this goal, we compare the accuracy and processing time of different feature extraction and classification methods offline, and the results indicate that the combination of time-domain features and backpropagation neural network has better performance. In total, nine subjects participated in the offline experiments, and the accuracy is up to 95.46% by employing two sEMG sensors to recognize six hand gestures.</description><subject>Adaptive boosting (AdaBoost)</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>backpropagation neural network (BPNN)</subject><subject>Electrodes</subject><subject>Embedded systems</subject><subject>Feature extraction</subject><subject>Frequency-domain analysis</subject><subject>Gesture recognition</subject><subject>Muscles</subject><subject>Neural networks</subject><subject>Prostheses</subject><subject>Sensors</subject><subject>surface electromyography (sEMG)</subject><subject>time-domain analysis</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWGo_gHhZ8Lw1k2x3M0fdahUKiu09pLsTSeluarI99NubUulp_vDem-HH2D3wKQDHp3U9X00FF3wqsESB1RUbCVlhrlDi9aUX_JZNYtxyzqGUlSqqEVt9UbA-dKZvKKt9tzfBRd9n3mYLisMhUPZNjf_p3eDSenWMA3XZi4nUZmmeO2spUD9k9c7E6KyjEO_YjTW7SJP_Ombrt9d1_Z4vPxcf9fMybwTKIS-BRKNmQLZAJGgFKk6bkshwUAI3DcwMcIlGttyUtlWNsFi0sJFQIJEcs8dz7D7430N6Vm_9IfTpohYzDjKFcJlUcFY1wccYyOp9cJ0JRw1cn-jpEz19oqf_6SXPw9njiOiiV1gqKaT8A6Zha38</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yang, Yikang</creator><creator>Duan, Feng</creator><creator>Ren, Jia</creator><creator>Xue, Jianing</creator><creator>Lv, Yizhi</creator><creator>Zhu, Chi</creator><creator>Yokoi, Hiroshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0719-7075</orcidid><orcidid>https://orcid.org/0000-0003-4637-0472</orcidid><orcidid>https://orcid.org/0000-0002-2179-2460</orcidid></search><sort><creationdate>20210301</creationdate><title>Performance Comparison of Gesture Recognition System Based on Different Classifiers</title><author>Yang, Yikang ; Duan, Feng ; Ren, Jia ; Xue, Jianing ; Lv, Yizhi ; Zhu, Chi ; Yokoi, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-61e2c851ef499e1d2980eb6eea01829bc15a1039a3d0a6fd8c2f94d1b3149ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive boosting (AdaBoost)</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>backpropagation neural network (BPNN)</topic><topic>Electrodes</topic><topic>Embedded systems</topic><topic>Feature extraction</topic><topic>Frequency-domain analysis</topic><topic>Gesture recognition</topic><topic>Muscles</topic><topic>Neural networks</topic><topic>Prostheses</topic><topic>Sensors</topic><topic>surface electromyography (sEMG)</topic><topic>time-domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yikang</creatorcontrib><creatorcontrib>Duan, Feng</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><creatorcontrib>Xue, Jianing</creatorcontrib><creatorcontrib>Lv, Yizhi</creatorcontrib><creatorcontrib>Zhu, Chi</creatorcontrib><creatorcontrib>Yokoi, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yikang</au><au>Duan, Feng</au><au>Ren, Jia</au><au>Xue, Jianing</au><au>Lv, Yizhi</au><au>Zhu, Chi</au><au>Yokoi, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Comparison of Gesture Recognition System Based on Different Classifiers</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>141</spage><epage>150</epage><pages>141-150</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>The hand plays a very important role in our daily life, and the amputees suffer a lot from the loss of hands or upper limbs. Hence, assisting devices are desired urgently. Today, the prosthetic hands based on surface electromyography (sEMG) signals can recognize many hand gestures, but some problems still exist. To identify more gestures, some recognition systems require multiple electrodes, which are unable to be applied to the amputees with less residual muscles. Meanwhile, better computing performance is required as the number of electrodes increases, which is difficult to be applied to the real-time embedded systems. In this article, we aim to recognize six hand gestures by using sEMG sensors as little as possible. To realize this goal, we compare the accuracy and processing time of different feature extraction and classification methods offline, and the results indicate that the combination of time-domain features and backpropagation neural network has better performance. In total, nine subjects participated in the offline experiments, and the accuracy is up to 95.46% by employing two sEMG sensors to recognize six hand gestures.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2020.2969297</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0719-7075</orcidid><orcidid>https://orcid.org/0000-0003-4637-0472</orcidid><orcidid>https://orcid.org/0000-0002-2179-2460</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2021-03, Vol.13 (1), p.141-150
issn 2379-8920
2379-8939
language eng
recordid cdi_proquest_journals_2501318203
source IEEE Electronic Library (IEL)
subjects Adaptive boosting (AdaBoost)
Back propagation
Back propagation networks
backpropagation neural network (BPNN)
Electrodes
Embedded systems
Feature extraction
Frequency-domain analysis
Gesture recognition
Muscles
Neural networks
Prostheses
Sensors
surface electromyography (sEMG)
time-domain analysis
title Performance Comparison of Gesture Recognition System Based on Different Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Comparison%20of%20Gesture%20Recognition%20System%20Based%20on%20Different%20Classifiers&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Yang,%20Yikang&rft.date=2021-03-01&rft.volume=13&rft.issue=1&rft.spage=141&rft.epage=150&rft.pages=141-150&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2020.2969297&rft_dat=%3Cproquest_RIE%3E2501318203%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501318203&rft_id=info:pmid/&rft_ieee_id=8968323&rfr_iscdi=true