Optimization aspects of electrodeposition of photoluminescent conductive polymer layer onto neural microelectrode arrays

In neuroscience the use of a microelectrode array allows the detection of neuroelectric signals with high temporal resolution in a confined space within the tissue, while two-photon laser scanning microscopy provides high spatial resolution in a wide region of interest. The combination of these two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2021-02, Vol.260, p.124163, Article 124163
Hauptverfasser: Marek, T., Orbán, G., Meszéna, D., Márton, G., Ulbert, I., Mészáros, G., Keresztes, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 124163
container_title Materials chemistry and physics
container_volume 260
creator Marek, T.
Orbán, G.
Meszéna, D.
Márton, G.
Ulbert, I.
Mészáros, G.
Keresztes, Z.
description In neuroscience the use of a microelectrode array allows the detection of neuroelectric signals with high temporal resolution in a confined space within the tissue, while two-photon laser scanning microscopy provides high spatial resolution in a wide region of interest. The combination of these two techniques promises better understanding of the operation of neural pathways. To facilitate this connection, we studied the direct electrochemical deposition of the conductive polymer poly-2,3-ethylenedioxy-thiophene onto different Pt and Pt/Ir electrode surfaces from non-aqueous solvents, such as ionic liquid and propylene carbonate. We show the effects of electrochemical deposition technique (pulsed or continuous), monomer concentration range and solvent electrolyte type on the formation of photoluminescent - conductive films. For these variables we determined the optimal deposition parameters given as 0.025–0.050 M EDOT monomer concentration in BMIMBF4 ionic liquid and the use of pulsed deposition process to form an adherent, uniform functional electrode coating. [Display omitted] •Photoluminescent, conductive PEDOT layer can be deposited on neural microelectrode arrays by direct electropolymerization.•The structure of PEDOT layer can be controlled by the number, length and voltage of electric pulses applied in the process.•Optimization of applied monomer concentration is important to avoid the formation of detached polymer particles.•BMIMBF4 ionic liquid is a better electrolyte for the polymerization process than PC(LiClO4).
doi_str_mv 10.1016/j.matchemphys.2020.124163
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501261066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058420315236</els_id><sourcerecordid>2501261066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5ca4d44a4d2b0c2eeac686798bf1b46011fe409b1ddafdd48024ee11c6cd6ac53</originalsourceid><addsrcrecordid>eNqNUE1PwzAMjRBIjMF_COLcEadp1h3RxJc0iQucoyxxtUxtU5IUUX49gSHEkYtt2e8924-QS2ALYCCv94tOJ7PDbthNccEZz30uQJZHZAb1clWUJfBjMmO8EgWranFKzmLcMwZLgHJG3p-G5Dr3oZPzPdVxQJMi9Q3FNlfBWxx8dN_D3Bx2Pvl27FyP0WCfqPG9HU1yb0gH304dBtrqKUffJ097HINuaedM8L96VIegp3hOThrdRrz4yXPycnf7vH4oNk_3j-ubTWEEY6mojBZWiBz4lhmOqI2s5XJVbxvYCskAGhRstQVrdWOtqBkXiABGGiu1qco5uTroDsG_jhiT2vsx9Hml4hUDLoFJmVGrAypfGmPARg3BdTpMCpj6Mlrt1R-j1ZfR6mB05q4PXMxvvDkMKhqHvUHrQv5ZWe_-ofIJwOCSAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501261066</pqid></control><display><type>article</type><title>Optimization aspects of electrodeposition of photoluminescent conductive polymer layer onto neural microelectrode arrays</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Marek, T. ; Orbán, G. ; Meszéna, D. ; Márton, G. ; Ulbert, I. ; Mészáros, G. ; Keresztes, Z.</creator><creatorcontrib>Marek, T. ; Orbán, G. ; Meszéna, D. ; Márton, G. ; Ulbert, I. ; Mészáros, G. ; Keresztes, Z.</creatorcontrib><description>In neuroscience the use of a microelectrode array allows the detection of neuroelectric signals with high temporal resolution in a confined space within the tissue, while two-photon laser scanning microscopy provides high spatial resolution in a wide region of interest. The combination of these two techniques promises better understanding of the operation of neural pathways. To facilitate this connection, we studied the direct electrochemical deposition of the conductive polymer poly-2,3-ethylenedioxy-thiophene onto different Pt and Pt/Ir electrode surfaces from non-aqueous solvents, such as ionic liquid and propylene carbonate. We show the effects of electrochemical deposition technique (pulsed or continuous), monomer concentration range and solvent electrolyte type on the formation of photoluminescent - conductive films. For these variables we determined the optimal deposition parameters given as 0.025–0.050 M EDOT monomer concentration in BMIMBF4 ionic liquid and the use of pulsed deposition process to form an adherent, uniform functional electrode coating. [Display omitted] •Photoluminescent, conductive PEDOT layer can be deposited on neural microelectrode arrays by direct electropolymerization.•The structure of PEDOT layer can be controlled by the number, length and voltage of electric pulses applied in the process.•Optimization of applied monomer concentration is important to avoid the formation of detached polymer particles.•BMIMBF4 ionic liquid is a better electrolyte for the polymerization process than PC(LiClO4).</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2020.124163</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Arrays ; Coated electrodes ; Conducting polymers ; Conductive polymer ; Conductivity ; Confined spaces ; Direct electropolymerization ; Ionic liquids ; Ions ; Iridium ; Microelectrodes ; Monomers ; Neural microelectrode ; Neuroelectric signals ; Optimization ; PEDOT ; Photoluminescence ; Propylene ; Scanning microscopy ; Solvents ; Spatial resolution ; Temporal resolution</subject><ispartof>Materials chemistry and physics, 2021-02, Vol.260, p.124163, Article 124163</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Feb 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5ca4d44a4d2b0c2eeac686798bf1b46011fe409b1ddafdd48024ee11c6cd6ac53</citedby><cites>FETCH-LOGICAL-c400t-5ca4d44a4d2b0c2eeac686798bf1b46011fe409b1ddafdd48024ee11c6cd6ac53</cites><orcidid>0000-0003-4359-0111 ; 0000-0002-1126-4779 ; 0000-0002-8513-626X ; 0000-0001-9941-9159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2020.124163$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Marek, T.</creatorcontrib><creatorcontrib>Orbán, G.</creatorcontrib><creatorcontrib>Meszéna, D.</creatorcontrib><creatorcontrib>Márton, G.</creatorcontrib><creatorcontrib>Ulbert, I.</creatorcontrib><creatorcontrib>Mészáros, G.</creatorcontrib><creatorcontrib>Keresztes, Z.</creatorcontrib><title>Optimization aspects of electrodeposition of photoluminescent conductive polymer layer onto neural microelectrode arrays</title><title>Materials chemistry and physics</title><description>In neuroscience the use of a microelectrode array allows the detection of neuroelectric signals with high temporal resolution in a confined space within the tissue, while two-photon laser scanning microscopy provides high spatial resolution in a wide region of interest. The combination of these two techniques promises better understanding of the operation of neural pathways. To facilitate this connection, we studied the direct electrochemical deposition of the conductive polymer poly-2,3-ethylenedioxy-thiophene onto different Pt and Pt/Ir electrode surfaces from non-aqueous solvents, such as ionic liquid and propylene carbonate. We show the effects of electrochemical deposition technique (pulsed or continuous), monomer concentration range and solvent electrolyte type on the formation of photoluminescent - conductive films. For these variables we determined the optimal deposition parameters given as 0.025–0.050 M EDOT monomer concentration in BMIMBF4 ionic liquid and the use of pulsed deposition process to form an adherent, uniform functional electrode coating. [Display omitted] •Photoluminescent, conductive PEDOT layer can be deposited on neural microelectrode arrays by direct electropolymerization.•The structure of PEDOT layer can be controlled by the number, length and voltage of electric pulses applied in the process.•Optimization of applied monomer concentration is important to avoid the formation of detached polymer particles.•BMIMBF4 ionic liquid is a better electrolyte for the polymerization process than PC(LiClO4).</description><subject>Arrays</subject><subject>Coated electrodes</subject><subject>Conducting polymers</subject><subject>Conductive polymer</subject><subject>Conductivity</subject><subject>Confined spaces</subject><subject>Direct electropolymerization</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Iridium</subject><subject>Microelectrodes</subject><subject>Monomers</subject><subject>Neural microelectrode</subject><subject>Neuroelectric signals</subject><subject>Optimization</subject><subject>PEDOT</subject><subject>Photoluminescence</subject><subject>Propylene</subject><subject>Scanning microscopy</subject><subject>Solvents</subject><subject>Spatial resolution</subject><subject>Temporal resolution</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUE1PwzAMjRBIjMF_COLcEadp1h3RxJc0iQucoyxxtUxtU5IUUX49gSHEkYtt2e8924-QS2ALYCCv94tOJ7PDbthNccEZz30uQJZHZAb1clWUJfBjMmO8EgWranFKzmLcMwZLgHJG3p-G5Dr3oZPzPdVxQJMi9Q3FNlfBWxx8dN_D3Bx2Pvl27FyP0WCfqPG9HU1yb0gH304dBtrqKUffJ097HINuaedM8L96VIegp3hOThrdRrz4yXPycnf7vH4oNk_3j-ubTWEEY6mojBZWiBz4lhmOqI2s5XJVbxvYCskAGhRstQVrdWOtqBkXiABGGiu1qco5uTroDsG_jhiT2vsx9Hml4hUDLoFJmVGrAypfGmPARg3BdTpMCpj6Mlrt1R-j1ZfR6mB05q4PXMxvvDkMKhqHvUHrQv5ZWe_-ofIJwOCSAg</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Marek, T.</creator><creator>Orbán, G.</creator><creator>Meszéna, D.</creator><creator>Márton, G.</creator><creator>Ulbert, I.</creator><creator>Mészáros, G.</creator><creator>Keresztes, Z.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4359-0111</orcidid><orcidid>https://orcid.org/0000-0002-1126-4779</orcidid><orcidid>https://orcid.org/0000-0002-8513-626X</orcidid><orcidid>https://orcid.org/0000-0001-9941-9159</orcidid></search><sort><creationdate>20210215</creationdate><title>Optimization aspects of electrodeposition of photoluminescent conductive polymer layer onto neural microelectrode arrays</title><author>Marek, T. ; Orbán, G. ; Meszéna, D. ; Márton, G. ; Ulbert, I. ; Mészáros, G. ; Keresztes, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5ca4d44a4d2b0c2eeac686798bf1b46011fe409b1ddafdd48024ee11c6cd6ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Coated electrodes</topic><topic>Conducting polymers</topic><topic>Conductive polymer</topic><topic>Conductivity</topic><topic>Confined spaces</topic><topic>Direct electropolymerization</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Iridium</topic><topic>Microelectrodes</topic><topic>Monomers</topic><topic>Neural microelectrode</topic><topic>Neuroelectric signals</topic><topic>Optimization</topic><topic>PEDOT</topic><topic>Photoluminescence</topic><topic>Propylene</topic><topic>Scanning microscopy</topic><topic>Solvents</topic><topic>Spatial resolution</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marek, T.</creatorcontrib><creatorcontrib>Orbán, G.</creatorcontrib><creatorcontrib>Meszéna, D.</creatorcontrib><creatorcontrib>Márton, G.</creatorcontrib><creatorcontrib>Ulbert, I.</creatorcontrib><creatorcontrib>Mészáros, G.</creatorcontrib><creatorcontrib>Keresztes, Z.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marek, T.</au><au>Orbán, G.</au><au>Meszéna, D.</au><au>Márton, G.</au><au>Ulbert, I.</au><au>Mészáros, G.</au><au>Keresztes, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization aspects of electrodeposition of photoluminescent conductive polymer layer onto neural microelectrode arrays</atitle><jtitle>Materials chemistry and physics</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>260</volume><spage>124163</spage><pages>124163-</pages><artnum>124163</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>In neuroscience the use of a microelectrode array allows the detection of neuroelectric signals with high temporal resolution in a confined space within the tissue, while two-photon laser scanning microscopy provides high spatial resolution in a wide region of interest. The combination of these two techniques promises better understanding of the operation of neural pathways. To facilitate this connection, we studied the direct electrochemical deposition of the conductive polymer poly-2,3-ethylenedioxy-thiophene onto different Pt and Pt/Ir electrode surfaces from non-aqueous solvents, such as ionic liquid and propylene carbonate. We show the effects of electrochemical deposition technique (pulsed or continuous), monomer concentration range and solvent electrolyte type on the formation of photoluminescent - conductive films. For these variables we determined the optimal deposition parameters given as 0.025–0.050 M EDOT monomer concentration in BMIMBF4 ionic liquid and the use of pulsed deposition process to form an adherent, uniform functional electrode coating. [Display omitted] •Photoluminescent, conductive PEDOT layer can be deposited on neural microelectrode arrays by direct electropolymerization.•The structure of PEDOT layer can be controlled by the number, length and voltage of electric pulses applied in the process.•Optimization of applied monomer concentration is important to avoid the formation of detached polymer particles.•BMIMBF4 ionic liquid is a better electrolyte for the polymerization process than PC(LiClO4).</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2020.124163</doi><orcidid>https://orcid.org/0000-0003-4359-0111</orcidid><orcidid>https://orcid.org/0000-0002-1126-4779</orcidid><orcidid>https://orcid.org/0000-0002-8513-626X</orcidid><orcidid>https://orcid.org/0000-0001-9941-9159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2021-02, Vol.260, p.124163, Article 124163
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_2501261066
source Elsevier ScienceDirect Journals Complete
subjects Arrays
Coated electrodes
Conducting polymers
Conductive polymer
Conductivity
Confined spaces
Direct electropolymerization
Ionic liquids
Ions
Iridium
Microelectrodes
Monomers
Neural microelectrode
Neuroelectric signals
Optimization
PEDOT
Photoluminescence
Propylene
Scanning microscopy
Solvents
Spatial resolution
Temporal resolution
title Optimization aspects of electrodeposition of photoluminescent conductive polymer layer onto neural microelectrode arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20aspects%20of%20electrodeposition%20of%20photoluminescent%20conductive%20polymer%20layer%20onto%20neural%20microelectrode%20arrays&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Marek,%20T.&rft.date=2021-02-15&rft.volume=260&rft.spage=124163&rft.pages=124163-&rft.artnum=124163&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2020.124163&rft_dat=%3Cproquest_cross%3E2501261066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501261066&rft_id=info:pmid/&rft_els_id=S0254058420315236&rfr_iscdi=true