Crystal plasticity modeling of fretting fatigue behavior of an aluminum alloy

Aluminum alloy (AA)7075 is widely used to fabricate parts and components on aircrafts, which are subjected to contact loading that may induce fretting fatigue and catastrophic failure. In this work, a crystal plasticity finite element (CPFE) model accounting for the microstructural features is devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology international 2021-04, Vol.156, p.106841, Article 106841
Hauptverfasser: Wang, Jian, Chen, Tianju, Zhou, Caizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106841
container_title Tribology international
container_volume 156
creator Wang, Jian
Chen, Tianju
Zhou, Caizhi
description Aluminum alloy (AA)7075 is widely used to fabricate parts and components on aircrafts, which are subjected to contact loading that may induce fretting fatigue and catastrophic failure. In this work, a crystal plasticity finite element (CPFE) model accounting for the microstructural features is developed for simulating the fretting fatigue of AA7075-T651. A submodel technology is adopted to refine the contact region to obtain more accurate simulation data. An energy-based criterion is developed for prediction of crack initiation life. The hotspots for the fretting fatigue crack nucleation are identified by the maximum of plastic strain energy density. The proposed CPFE model achieves high accuracy on predicting the fretting fatigue crack initiation and validated by fretting fatigue experimental results. •Crystal plasticity finite element (CPFE) model is developed to predict the fretting fatigue crack initiation.•Experimental texture and grain morphologies are used as the input in the model.•An energy-based criterion is developed for the prediction of crack initiation life.•Submodel technology is adopted to refine the contact region.•The proposed CPFE model achieves high simulation accuracy and validated by fretting fatigue experimental results.
doi_str_mv 10.1016/j.triboint.2020.106841
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501260097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301679X20306666</els_id><sourcerecordid>2501260097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-771ab08eb8a3b4905da1a8c9a5911b1d3479589d5fc92e77259dc8073b7764a73</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BSl47jpJ06S5KYv_YMWLgreQpuma0jZrki7029tSPXuax8x7M8wPoWsMGwyY3Tab6G3pbB83BMjcZAXFJ2iFCy5SQhk9RSvIAKeMi89zdBFCAwCcCr5Cr1s_hqja5NCqEK22cUw6V5nW9vvE1UntTYyzrlW0-8EkpflSR-v8PFR9otqhs_3QTaJ14yU6q1UbzNVvXaOPx4f37XO6e3t62d7vUk2BxZRzrEooTFmorKQC8kphVWihcoFxiauMcpEXosprLYjhnOSi0gXwrOScUcWzNbpZ9h68-x5MiLJxg--nk5LkgAkDELOLLS7tXQje1PLgbaf8KDHIGZ1s5B86OaOTC7opeLcEzfTD0Rovg7am16ay3ugoK2f_W_EDa5d7IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501260097</pqid></control><display><type>article</type><title>Crystal plasticity modeling of fretting fatigue behavior of an aluminum alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Jian ; Chen, Tianju ; Zhou, Caizhi</creator><creatorcontrib>Wang, Jian ; Chen, Tianju ; Zhou, Caizhi</creatorcontrib><description>Aluminum alloy (AA)7075 is widely used to fabricate parts and components on aircrafts, which are subjected to contact loading that may induce fretting fatigue and catastrophic failure. In this work, a crystal plasticity finite element (CPFE) model accounting for the microstructural features is developed for simulating the fretting fatigue of AA7075-T651. A submodel technology is adopted to refine the contact region to obtain more accurate simulation data. An energy-based criterion is developed for prediction of crack initiation life. The hotspots for the fretting fatigue crack nucleation are identified by the maximum of plastic strain energy density. The proposed CPFE model achieves high accuracy on predicting the fretting fatigue crack initiation and validated by fretting fatigue experimental results. •Crystal plasticity finite element (CPFE) model is developed to predict the fretting fatigue crack initiation.•Experimental texture and grain morphologies are used as the input in the model.•An energy-based criterion is developed for the prediction of crack initiation life.•Submodel technology is adopted to refine the contact region.•The proposed CPFE model achieves high simulation accuracy and validated by fretting fatigue experimental results.</description><identifier>ISSN: 0301-679X</identifier><identifier>EISSN: 1879-2464</identifier><identifier>DOI: 10.1016/j.triboint.2020.106841</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Catastrophic events ; Crack initiation ; Crack propagation ; Crystal plasticity ; Dislocation density ; Fatigue failure ; Finite element method ; Flux density ; Fracture mechanics ; Fretting fatigue ; Model accuracy ; Nucleation ; Plastic deformation ; Plastic properties</subject><ispartof>Tribology international, 2021-04, Vol.156, p.106841, Article 106841</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-771ab08eb8a3b4905da1a8c9a5911b1d3479589d5fc92e77259dc8073b7764a73</citedby><cites>FETCH-LOGICAL-c406t-771ab08eb8a3b4905da1a8c9a5911b1d3479589d5fc92e77259dc8073b7764a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.triboint.2020.106841$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Chen, Tianju</creatorcontrib><creatorcontrib>Zhou, Caizhi</creatorcontrib><title>Crystal plasticity modeling of fretting fatigue behavior of an aluminum alloy</title><title>Tribology international</title><description>Aluminum alloy (AA)7075 is widely used to fabricate parts and components on aircrafts, which are subjected to contact loading that may induce fretting fatigue and catastrophic failure. In this work, a crystal plasticity finite element (CPFE) model accounting for the microstructural features is developed for simulating the fretting fatigue of AA7075-T651. A submodel technology is adopted to refine the contact region to obtain more accurate simulation data. An energy-based criterion is developed for prediction of crack initiation life. The hotspots for the fretting fatigue crack nucleation are identified by the maximum of plastic strain energy density. The proposed CPFE model achieves high accuracy on predicting the fretting fatigue crack initiation and validated by fretting fatigue experimental results. •Crystal plasticity finite element (CPFE) model is developed to predict the fretting fatigue crack initiation.•Experimental texture and grain morphologies are used as the input in the model.•An energy-based criterion is developed for the prediction of crack initiation life.•Submodel technology is adopted to refine the contact region.•The proposed CPFE model achieves high simulation accuracy and validated by fretting fatigue experimental results.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Catastrophic events</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Crystal plasticity</subject><subject>Dislocation density</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Fracture mechanics</subject><subject>Fretting fatigue</subject><subject>Model accuracy</subject><subject>Nucleation</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><issn>0301-679X</issn><issn>1879-2464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BSl47jpJ06S5KYv_YMWLgreQpuma0jZrki7029tSPXuax8x7M8wPoWsMGwyY3Tab6G3pbB83BMjcZAXFJ2iFCy5SQhk9RSvIAKeMi89zdBFCAwCcCr5Cr1s_hqja5NCqEK22cUw6V5nW9vvE1UntTYyzrlW0-8EkpflSR-v8PFR9otqhs_3QTaJ14yU6q1UbzNVvXaOPx4f37XO6e3t62d7vUk2BxZRzrEooTFmorKQC8kphVWihcoFxiauMcpEXosprLYjhnOSi0gXwrOScUcWzNbpZ9h68-x5MiLJxg--nk5LkgAkDELOLLS7tXQje1PLgbaf8KDHIGZ1s5B86OaOTC7opeLcEzfTD0Rovg7am16ay3ugoK2f_W_EDa5d7IQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Wang, Jian</creator><creator>Chen, Tianju</creator><creator>Zhou, Caizhi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202104</creationdate><title>Crystal plasticity modeling of fretting fatigue behavior of an aluminum alloy</title><author>Wang, Jian ; Chen, Tianju ; Zhou, Caizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-771ab08eb8a3b4905da1a8c9a5911b1d3479589d5fc92e77259dc8073b7764a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Catastrophic events</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Crystal plasticity</topic><topic>Dislocation density</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Fracture mechanics</topic><topic>Fretting fatigue</topic><topic>Model accuracy</topic><topic>Nucleation</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Chen, Tianju</creatorcontrib><creatorcontrib>Zhou, Caizhi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Chen, Tianju</au><au>Zhou, Caizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal plasticity modeling of fretting fatigue behavior of an aluminum alloy</atitle><jtitle>Tribology international</jtitle><date>2021-04</date><risdate>2021</risdate><volume>156</volume><spage>106841</spage><pages>106841-</pages><artnum>106841</artnum><issn>0301-679X</issn><eissn>1879-2464</eissn><abstract>Aluminum alloy (AA)7075 is widely used to fabricate parts and components on aircrafts, which are subjected to contact loading that may induce fretting fatigue and catastrophic failure. In this work, a crystal plasticity finite element (CPFE) model accounting for the microstructural features is developed for simulating the fretting fatigue of AA7075-T651. A submodel technology is adopted to refine the contact region to obtain more accurate simulation data. An energy-based criterion is developed for prediction of crack initiation life. The hotspots for the fretting fatigue crack nucleation are identified by the maximum of plastic strain energy density. The proposed CPFE model achieves high accuracy on predicting the fretting fatigue crack initiation and validated by fretting fatigue experimental results. •Crystal plasticity finite element (CPFE) model is developed to predict the fretting fatigue crack initiation.•Experimental texture and grain morphologies are used as the input in the model.•An energy-based criterion is developed for the prediction of crack initiation life.•Submodel technology is adopted to refine the contact region.•The proposed CPFE model achieves high simulation accuracy and validated by fretting fatigue experimental results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.triboint.2020.106841</doi></addata></record>
fulltext fulltext
identifier ISSN: 0301-679X
ispartof Tribology international, 2021-04, Vol.156, p.106841, Article 106841
issn 0301-679X
1879-2464
language eng
recordid cdi_proquest_journals_2501260097
source Elsevier ScienceDirect Journals
subjects Aluminum alloys
Aluminum base alloys
Catastrophic events
Crack initiation
Crack propagation
Crystal plasticity
Dislocation density
Fatigue failure
Finite element method
Flux density
Fracture mechanics
Fretting fatigue
Model accuracy
Nucleation
Plastic deformation
Plastic properties
title Crystal plasticity modeling of fretting fatigue behavior of an aluminum alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20plasticity%20modeling%20of%20fretting%20fatigue%20behavior%20of%20an%20aluminum%20alloy&rft.jtitle=Tribology%20international&rft.au=Wang,%20Jian&rft.date=2021-04&rft.volume=156&rft.spage=106841&rft.pages=106841-&rft.artnum=106841&rft.issn=0301-679X&rft.eissn=1879-2464&rft_id=info:doi/10.1016/j.triboint.2020.106841&rft_dat=%3Cproquest_cross%3E2501260097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501260097&rft_id=info:pmid/&rft_els_id=S0301679X20306666&rfr_iscdi=true