Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni–Bi bilayers
We report how the sequence of deposition of Ni and Bi affects the final morphology of Ni–Bi bilayers. Two samples have been prepared by sputtering with the same thickness of Ni (4 nm) and Bi (40 nm) but reversed sequence of deposition. The sample with Bi deposited first formed a smooth layer of NiBi...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2021-02, Vol.260, p.124112, Article 124112 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 124112 |
container_title | Materials chemistry and physics |
container_volume | 260 |
creator | Liu, Liying Xing, Yutao Merino, I.L.C. Henriques, M.D.R. Dória, Mauro Solórzano, I.G. Baggio-Saitovitch, E. |
description | We report how the sequence of deposition of Ni and Bi affects the final morphology of Ni–Bi bilayers. Two samples have been prepared by sputtering with the same thickness of Ni (4 nm) and Bi (40 nm) but reversed sequence of deposition. The sample with Bi deposited first formed a smooth layer of NiBi3 intermetallic, while the sample Ni deposited first formed mainly NiBi3 nanoparticles with its out-of-plane dimensions bigger than the thickness of the total deposited bilayer. The NiBi3 phase in the two samples results from differing nucleation and growth processes leading to differing morphologies. The volume of NiBi3 is smaller than the pure Bi volume needed for the reaction and this volume contraction is a thermodynamic factor that favors the NiBi3 formation. Both samples are superconducting with the critical temperature Tc of ~4.0 K. The Ni–Bi system offers an example of the formation of a superconducting compound under a volume contraction of its constituents, thus being of interest for both researchers in physics and material sciences.
[Display omitted]
•Sequence of deposition induces modification of morphology in Ni–Bi bilayers.•Intermetallic NiBi3 phase is formed in both samples.•For the reaction Ni+3Bi.→NiBi3, the volumes have the relation: VNiBi3 |
doi_str_mv | 10.1016/j.matchemphys.2020.124112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501259917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058420314723</els_id><sourcerecordid>2501259917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-56495a9e0ab4a914cba8b1e331833cfd10547a1b250eb26b33c98b61a6d537863</originalsourceid><addsrcrecordid>eNqNkEtuGzEQRInABix_7sAg61HYnC-XsZA4BgRnEWdN8NMjUZDIMTljYHa-g2_ok4SyssjSqwYKVd1dj5DPwJbAoPm6Wx7UaLZ4GLZzWnLGs84rAP6JLKBrRVGWwM_IgvG6KljdVRfkMqUdY9AClAsSfw_Bj8pjmBI9hDhswz5sZqq8pcNWJcyidb0zanTBUxvdM3qqZ5rwaUJvkIaeWhxCcu8G52maBowmeDuZ0fkNfXBvL6-3jmq3VzPGdE3Oe7VPePNvXpE_P74_rn4W619396tv68KUlRiLuqlErQQypSsloDJadRow9-nK0vQWWF21CjSvGWre6CyKTjegGluXbdeUV-TLae8QQ_41jXIXpujzSZkzwGshoM0ucXKZGFKK2MshuoOKswQmj4jlTv6HWB4RyxPinF2dsphrPDuMMhl3hGJdRDNKG9wHtvwFMBCN4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501259917</pqid></control><display><type>article</type><title>Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni–Bi bilayers</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Liying ; Xing, Yutao ; Merino, I.L.C. ; Henriques, M.D.R. ; Dória, Mauro ; Solórzano, I.G. ; Baggio-Saitovitch, E.</creator><creatorcontrib>Liu, Liying ; Xing, Yutao ; Merino, I.L.C. ; Henriques, M.D.R. ; Dória, Mauro ; Solórzano, I.G. ; Baggio-Saitovitch, E.</creatorcontrib><description>We report how the sequence of deposition of Ni and Bi affects the final morphology of Ni–Bi bilayers. Two samples have been prepared by sputtering with the same thickness of Ni (4 nm) and Bi (40 nm) but reversed sequence of deposition. The sample with Bi deposited first formed a smooth layer of NiBi3 intermetallic, while the sample Ni deposited first formed mainly NiBi3 nanoparticles with its out-of-plane dimensions bigger than the thickness of the total deposited bilayer. The NiBi3 phase in the two samples results from differing nucleation and growth processes leading to differing morphologies. The volume of NiBi3 is smaller than the pure Bi volume needed for the reaction and this volume contraction is a thermodynamic factor that favors the NiBi3 formation. Both samples are superconducting with the critical temperature Tc of ~4.0 K. The Ni–Bi system offers an example of the formation of a superconducting compound under a volume contraction of its constituents, thus being of interest for both researchers in physics and material sciences.
[Display omitted]
•Sequence of deposition induces modification of morphology in Ni–Bi bilayers.•Intermetallic NiBi3 phase is formed in both samples.•For the reaction Ni+3Bi.→NiBi3, the volumes have the relation: VNiBi3<VBi < VNi + VBi.•NiBi3 undergoes distinctly different nucleation and growth processes in the two samples.•Both Ni–Bi bilayers are superconducting with Tc ~4.0 K.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2020.124112</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bilayers ; Contraction ; Critical temperature ; Deposition ; Morphology ; Nanoparticles ; Ni–Bi bilayers ; Nucleation ; Nucleation and growth ; Phase modification ; Superconductivity ; Thickness</subject><ispartof>Materials chemistry and physics, 2021-02, Vol.260, p.124112, Article 124112</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-56495a9e0ab4a914cba8b1e331833cfd10547a1b250eb26b33c98b61a6d537863</citedby><cites>FETCH-LOGICAL-c349t-56495a9e0ab4a914cba8b1e331833cfd10547a1b250eb26b33c98b61a6d537863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2020.124112$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liu, Liying</creatorcontrib><creatorcontrib>Xing, Yutao</creatorcontrib><creatorcontrib>Merino, I.L.C.</creatorcontrib><creatorcontrib>Henriques, M.D.R.</creatorcontrib><creatorcontrib>Dória, Mauro</creatorcontrib><creatorcontrib>Solórzano, I.G.</creatorcontrib><creatorcontrib>Baggio-Saitovitch, E.</creatorcontrib><title>Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni–Bi bilayers</title><title>Materials chemistry and physics</title><description>We report how the sequence of deposition of Ni and Bi affects the final morphology of Ni–Bi bilayers. Two samples have been prepared by sputtering with the same thickness of Ni (4 nm) and Bi (40 nm) but reversed sequence of deposition. The sample with Bi deposited first formed a smooth layer of NiBi3 intermetallic, while the sample Ni deposited first formed mainly NiBi3 nanoparticles with its out-of-plane dimensions bigger than the thickness of the total deposited bilayer. The NiBi3 phase in the two samples results from differing nucleation and growth processes leading to differing morphologies. The volume of NiBi3 is smaller than the pure Bi volume needed for the reaction and this volume contraction is a thermodynamic factor that favors the NiBi3 formation. Both samples are superconducting with the critical temperature Tc of ~4.0 K. The Ni–Bi system offers an example of the formation of a superconducting compound under a volume contraction of its constituents, thus being of interest for both researchers in physics and material sciences.
[Display omitted]
•Sequence of deposition induces modification of morphology in Ni–Bi bilayers.•Intermetallic NiBi3 phase is formed in both samples.•For the reaction Ni+3Bi.→NiBi3, the volumes have the relation: VNiBi3<VBi < VNi + VBi.•NiBi3 undergoes distinctly different nucleation and growth processes in the two samples.•Both Ni–Bi bilayers are superconducting with Tc ~4.0 K.</description><subject>Bilayers</subject><subject>Contraction</subject><subject>Critical temperature</subject><subject>Deposition</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Ni–Bi bilayers</subject><subject>Nucleation</subject><subject>Nucleation and growth</subject><subject>Phase modification</subject><subject>Superconductivity</subject><subject>Thickness</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtuGzEQRInABix_7sAg61HYnC-XsZA4BgRnEWdN8NMjUZDIMTljYHa-g2_ok4SyssjSqwYKVd1dj5DPwJbAoPm6Wx7UaLZ4GLZzWnLGs84rAP6JLKBrRVGWwM_IgvG6KljdVRfkMqUdY9AClAsSfw_Bj8pjmBI9hDhswz5sZqq8pcNWJcyidb0zanTBUxvdM3qqZ5rwaUJvkIaeWhxCcu8G52maBowmeDuZ0fkNfXBvL6-3jmq3VzPGdE3Oe7VPePNvXpE_P74_rn4W619396tv68KUlRiLuqlErQQypSsloDJadRow9-nK0vQWWF21CjSvGWre6CyKTjegGluXbdeUV-TLae8QQ_41jXIXpujzSZkzwGshoM0ucXKZGFKK2MshuoOKswQmj4jlTv6HWB4RyxPinF2dsphrPDuMMhl3hGJdRDNKG9wHtvwFMBCN4w</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Liu, Liying</creator><creator>Xing, Yutao</creator><creator>Merino, I.L.C.</creator><creator>Henriques, M.D.R.</creator><creator>Dória, Mauro</creator><creator>Solórzano, I.G.</creator><creator>Baggio-Saitovitch, E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210215</creationdate><title>Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni–Bi bilayers</title><author>Liu, Liying ; Xing, Yutao ; Merino, I.L.C. ; Henriques, M.D.R. ; Dória, Mauro ; Solórzano, I.G. ; Baggio-Saitovitch, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-56495a9e0ab4a914cba8b1e331833cfd10547a1b250eb26b33c98b61a6d537863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bilayers</topic><topic>Contraction</topic><topic>Critical temperature</topic><topic>Deposition</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Ni–Bi bilayers</topic><topic>Nucleation</topic><topic>Nucleation and growth</topic><topic>Phase modification</topic><topic>Superconductivity</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Liying</creatorcontrib><creatorcontrib>Xing, Yutao</creatorcontrib><creatorcontrib>Merino, I.L.C.</creatorcontrib><creatorcontrib>Henriques, M.D.R.</creatorcontrib><creatorcontrib>Dória, Mauro</creatorcontrib><creatorcontrib>Solórzano, I.G.</creatorcontrib><creatorcontrib>Baggio-Saitovitch, E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Liying</au><au>Xing, Yutao</au><au>Merino, I.L.C.</au><au>Henriques, M.D.R.</au><au>Dória, Mauro</au><au>Solórzano, I.G.</au><au>Baggio-Saitovitch, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni–Bi bilayers</atitle><jtitle>Materials chemistry and physics</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>260</volume><spage>124112</spage><pages>124112-</pages><artnum>124112</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>We report how the sequence of deposition of Ni and Bi affects the final morphology of Ni–Bi bilayers. Two samples have been prepared by sputtering with the same thickness of Ni (4 nm) and Bi (40 nm) but reversed sequence of deposition. The sample with Bi deposited first formed a smooth layer of NiBi3 intermetallic, while the sample Ni deposited first formed mainly NiBi3 nanoparticles with its out-of-plane dimensions bigger than the thickness of the total deposited bilayer. The NiBi3 phase in the two samples results from differing nucleation and growth processes leading to differing morphologies. The volume of NiBi3 is smaller than the pure Bi volume needed for the reaction and this volume contraction is a thermodynamic factor that favors the NiBi3 formation. Both samples are superconducting with the critical temperature Tc of ~4.0 K. The Ni–Bi system offers an example of the formation of a superconducting compound under a volume contraction of its constituents, thus being of interest for both researchers in physics and material sciences.
[Display omitted]
•Sequence of deposition induces modification of morphology in Ni–Bi bilayers.•Intermetallic NiBi3 phase is formed in both samples.•For the reaction Ni+3Bi.→NiBi3, the volumes have the relation: VNiBi3<VBi < VNi + VBi.•NiBi3 undergoes distinctly different nucleation and growth processes in the two samples.•Both Ni–Bi bilayers are superconducting with Tc ~4.0 K.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2020.124112</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2021-02, Vol.260, p.124112, Article 124112 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_journals_2501259917 |
source | Elsevier ScienceDirect Journals |
subjects | Bilayers Contraction Critical temperature Deposition Morphology Nanoparticles Ni–Bi bilayers Nucleation Nucleation and growth Phase modification Superconductivity Thickness |
title | Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni–Bi bilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20morphology%20and%20phase%20modification%20driven%20by%20sequence%20of%20deposition%20in%20superconducting%20Ni%E2%80%93Bi%20bilayers&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Liu,%20Liying&rft.date=2021-02-15&rft.volume=260&rft.spage=124112&rft.pages=124112-&rft.artnum=124112&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2020.124112&rft_dat=%3Cproquest_cross%3E2501259917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501259917&rft_id=info:pmid/&rft_els_id=S0254058420314723&rfr_iscdi=true |