Hybrid ecommerce recommendation model incorporating product taxonomy and folksonomy

In modern ecommerce platforms, product content information may have two origins: one is tree-structured taxonomy attributes, and the other is free-form folksonomy tags. This paper proposes a hybrid model to incorporate taxonomy and folksonomy information to enhance ecommerce recommendations. It firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2021-02, Vol.214, p.106720, Article 106720
Hauptverfasser: Mao, Mingsong, Chen, Sihua, Zhang, Fuguo, Han, Jialin, Xiao, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106720
container_title Knowledge-based systems
container_volume 214
creator Mao, Mingsong
Chen, Sihua
Zhang, Fuguo
Han, Jialin
Xiao, Quan
description In modern ecommerce platforms, product content information may have two origins: one is tree-structured taxonomy attributes, and the other is free-form folksonomy tags. This paper proposes a hybrid model to incorporate taxonomy and folksonomy information to enhance ecommerce recommendations. It first develops a tree matching algorithm to establish the overall similarity between items, where tag information is integrated for semantic analysis for taxonomy attributes. Next, it proposes a unique random walk model on a heterogeneous graph constructed by user nodes and item nodes and different types of relations — user–item preference and item–item similarity relations. The random walk model is designed to be effective to identify the nearest item nodes for a particular user node, which are seen as the best-fit items for recommendations. Empirical experiments demonstrate that the proposed model improves performance in terms of both recommendation coverage and accuracy, especially for sparse data.
doi_str_mv 10.1016/j.knosys.2020.106720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501258065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705120308492</els_id><sourcerecordid>2501258065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-18b7aa47125486e5020ce0820e2753a13b418b1d596dd9e8093dae583ba5d69c3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwDzhU4tzhpE2bXpDQBAxpEgfgHKWJh9KtyUg6RP89GeXMyR96_dp-CLmmsKBAq9tusXU-jnHBgB1bVc3ghMyoqFlel9Cckhk0HPIaOD0nFzF2AMAYFTPyuhrbYE2G2vc9Bo1ZmFJn1GC9y3pvcJdZp33Y-5B67iPbB28OesgG9e2d78dMOZNt_G4bf8tLcrZRu4hXf3FO3h8f3parfP3y9Ly8X-e6KMohp6KtlSpryngpKuTpdo0gGCCreaFo0ZZJQg1vKmMaFNAURiEXRau4qRpdzMnN5Jvu-TxgHGTnD8GllZJxSLYCKp5U5aTSwccYcCP3wfYqjJKCPOKTnZzwySM-OeFLY3fTGKYPviwGGbVFp9HYRGiQxtv_DX4AETR7nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501258065</pqid></control><display><type>article</type><title>Hybrid ecommerce recommendation model incorporating product taxonomy and folksonomy</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mao, Mingsong ; Chen, Sihua ; Zhang, Fuguo ; Han, Jialin ; Xiao, Quan</creator><creatorcontrib>Mao, Mingsong ; Chen, Sihua ; Zhang, Fuguo ; Han, Jialin ; Xiao, Quan</creatorcontrib><description>In modern ecommerce platforms, product content information may have two origins: one is tree-structured taxonomy attributes, and the other is free-form folksonomy tags. This paper proposes a hybrid model to incorporate taxonomy and folksonomy information to enhance ecommerce recommendations. It first develops a tree matching algorithm to establish the overall similarity between items, where tag information is integrated for semantic analysis for taxonomy attributes. Next, it proposes a unique random walk model on a heterogeneous graph constructed by user nodes and item nodes and different types of relations — user–item preference and item–item similarity relations. The random walk model is designed to be effective to identify the nearest item nodes for a particular user node, which are seen as the best-fit items for recommendations. Empirical experiments demonstrate that the proposed model improves performance in terms of both recommendation coverage and accuracy, especially for sparse data.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2020.106720</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; E-commerce ; Electronic commerce ; Empirical analysis ; Folksonomy ; Free form ; Nodes ; Random walk ; Recommender system ; Semantics ; Similarity ; Taxonomy ; Vocabularies &amp; taxonomies</subject><ispartof>Knowledge-based systems, 2021-02, Vol.214, p.106720, Article 106720</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Feb 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-18b7aa47125486e5020ce0820e2753a13b418b1d596dd9e8093dae583ba5d69c3</citedby><cites>FETCH-LOGICAL-c334t-18b7aa47125486e5020ce0820e2753a13b418b1d596dd9e8093dae583ba5d69c3</cites><orcidid>0000-0002-2260-8223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2020.106720$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Mao, Mingsong</creatorcontrib><creatorcontrib>Chen, Sihua</creatorcontrib><creatorcontrib>Zhang, Fuguo</creatorcontrib><creatorcontrib>Han, Jialin</creatorcontrib><creatorcontrib>Xiao, Quan</creatorcontrib><title>Hybrid ecommerce recommendation model incorporating product taxonomy and folksonomy</title><title>Knowledge-based systems</title><description>In modern ecommerce platforms, product content information may have two origins: one is tree-structured taxonomy attributes, and the other is free-form folksonomy tags. This paper proposes a hybrid model to incorporate taxonomy and folksonomy information to enhance ecommerce recommendations. It first develops a tree matching algorithm to establish the overall similarity between items, where tag information is integrated for semantic analysis for taxonomy attributes. Next, it proposes a unique random walk model on a heterogeneous graph constructed by user nodes and item nodes and different types of relations — user–item preference and item–item similarity relations. The random walk model is designed to be effective to identify the nearest item nodes for a particular user node, which are seen as the best-fit items for recommendations. Empirical experiments demonstrate that the proposed model improves performance in terms of both recommendation coverage and accuracy, especially for sparse data.</description><subject>Algorithms</subject><subject>E-commerce</subject><subject>Electronic commerce</subject><subject>Empirical analysis</subject><subject>Folksonomy</subject><subject>Free form</subject><subject>Nodes</subject><subject>Random walk</subject><subject>Recommender system</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Taxonomy</subject><subject>Vocabularies &amp; taxonomies</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwDzhU4tzhpE2bXpDQBAxpEgfgHKWJh9KtyUg6RP89GeXMyR96_dp-CLmmsKBAq9tusXU-jnHBgB1bVc3ghMyoqFlel9Cckhk0HPIaOD0nFzF2AMAYFTPyuhrbYE2G2vc9Bo1ZmFJn1GC9y3pvcJdZp33Y-5B67iPbB28OesgG9e2d78dMOZNt_G4bf8tLcrZRu4hXf3FO3h8f3parfP3y9Ly8X-e6KMohp6KtlSpryngpKuTpdo0gGCCreaFo0ZZJQg1vKmMaFNAURiEXRau4qRpdzMnN5Jvu-TxgHGTnD8GllZJxSLYCKp5U5aTSwccYcCP3wfYqjJKCPOKTnZzwySM-OeFLY3fTGKYPviwGGbVFp9HYRGiQxtv_DX4AETR7nw</recordid><startdate>20210228</startdate><enddate>20210228</enddate><creator>Mao, Mingsong</creator><creator>Chen, Sihua</creator><creator>Zhang, Fuguo</creator><creator>Han, Jialin</creator><creator>Xiao, Quan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2260-8223</orcidid></search><sort><creationdate>20210228</creationdate><title>Hybrid ecommerce recommendation model incorporating product taxonomy and folksonomy</title><author>Mao, Mingsong ; Chen, Sihua ; Zhang, Fuguo ; Han, Jialin ; Xiao, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-18b7aa47125486e5020ce0820e2753a13b418b1d596dd9e8093dae583ba5d69c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>E-commerce</topic><topic>Electronic commerce</topic><topic>Empirical analysis</topic><topic>Folksonomy</topic><topic>Free form</topic><topic>Nodes</topic><topic>Random walk</topic><topic>Recommender system</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Taxonomy</topic><topic>Vocabularies &amp; taxonomies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Mingsong</creatorcontrib><creatorcontrib>Chen, Sihua</creatorcontrib><creatorcontrib>Zhang, Fuguo</creatorcontrib><creatorcontrib>Han, Jialin</creatorcontrib><creatorcontrib>Xiao, Quan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Mingsong</au><au>Chen, Sihua</au><au>Zhang, Fuguo</au><au>Han, Jialin</au><au>Xiao, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid ecommerce recommendation model incorporating product taxonomy and folksonomy</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-02-28</date><risdate>2021</risdate><volume>214</volume><spage>106720</spage><pages>106720-</pages><artnum>106720</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>In modern ecommerce platforms, product content information may have two origins: one is tree-structured taxonomy attributes, and the other is free-form folksonomy tags. This paper proposes a hybrid model to incorporate taxonomy and folksonomy information to enhance ecommerce recommendations. It first develops a tree matching algorithm to establish the overall similarity between items, where tag information is integrated for semantic analysis for taxonomy attributes. Next, it proposes a unique random walk model on a heterogeneous graph constructed by user nodes and item nodes and different types of relations — user–item preference and item–item similarity relations. The random walk model is designed to be effective to identify the nearest item nodes for a particular user node, which are seen as the best-fit items for recommendations. Empirical experiments demonstrate that the proposed model improves performance in terms of both recommendation coverage and accuracy, especially for sparse data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2020.106720</doi><orcidid>https://orcid.org/0000-0002-2260-8223</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2021-02, Vol.214, p.106720, Article 106720
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2501258065
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
E-commerce
Electronic commerce
Empirical analysis
Folksonomy
Free form
Nodes
Random walk
Recommender system
Semantics
Similarity
Taxonomy
Vocabularies & taxonomies
title Hybrid ecommerce recommendation model incorporating product taxonomy and folksonomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20ecommerce%20recommendation%20model%20incorporating%20product%20taxonomy%20and%20folksonomy&rft.jtitle=Knowledge-based%20systems&rft.au=Mao,%20Mingsong&rft.date=2021-02-28&rft.volume=214&rft.spage=106720&rft.pages=106720-&rft.artnum=106720&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2020.106720&rft_dat=%3Cproquest_cross%3E2501258065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501258065&rft_id=info:pmid/&rft_els_id=S0950705120308492&rfr_iscdi=true