A systematic review of the Uridine diphosphate-Galactose/Glucose-4-epimerase (UGE) in plants

Uridine diphosphate (UDP)-Galactose/Glucose-4-epimerase (UGE) is the third enzyme involved in the Leloir pathway. It catalyzes the conversion of UDP-Galactose to UDP-Glucose, which is a rate-limiting step for polysaccharides biosynthesis. As the main cell wall materials, polysaccharides play an irre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant growth regulation 2021-04, Vol.93 (3), p.267-278
Hauptverfasser: Hou, Jiaming, Tian, Shaokai, Yang, Lin, Zhang, Zhixin, Liu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 3
container_start_page 267
container_title Plant growth regulation
container_volume 93
creator Hou, Jiaming
Tian, Shaokai
Yang, Lin
Zhang, Zhixin
Liu, Ying
description Uridine diphosphate (UDP)-Galactose/Glucose-4-epimerase (UGE) is the third enzyme involved in the Leloir pathway. It catalyzes the conversion of UDP-Galactose to UDP-Glucose, which is a rate-limiting step for polysaccharides biosynthesis. As the main cell wall materials, polysaccharides play an irreplaceable role throughout the whole life history of plant. In this review, 1243 UGE mRNA sequences registered in NCBI were obtained and their evolutionary relationship was analyzed by constructing a neighbor-joining tree based on representative sequences. The physicochemical properties of 15 specific UGEs were analyzed, and four UGE sequences of Setaria italica , Zea mays , Ricinus Communis , and Oryza sativa were selected for further secondary structure, three-dimensional protein modeling, transmembrane structure, and signal peptide prediction analyses. The results demonstrate that UGEs are mostly conservative without signal peptides and exert activities in cytoplasm. Then, studies related to the catalytic reaction, characteristic structure, function, and regulation of UGE were summarized, which provide strong evidence that UGE plays a crucial role in cell growth, cell differentiation, cell-to-cell communication, primary metabolism, secondary metabolism, and defense responses. However, the molecular mechanisms whereby UGE regulates the plant stress resistance and useful secondary metabolites accumulation are far from clear. This paper will lay a foundation for further studies and applications of UGE.
doi_str_mv 10.1007/s10725-020-00686-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501181238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501181238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b3bfb16dc6fdfa48ca1b2794009a127e3d190fc3026acce5b7ddfb18c5badfde3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsFb_gKsBN7oY-16m-VqWUqNQcGN3wjCZebEpaRJnpkr_vdEI7lzdzT33wmHsGuEeAdKZR0ijWEAEAiDJEoEnbIJxKkUMWXrKJoBJKpIc5Dm78H4HAFkW44S9Lrg_-kB7HWrDHX3U9Mm7ioct8Y2rbd0St3W_7Xy_1YFEoRttQudpVjQHM6SYC-rrPTntid9uitUdr1veN7oN_pKdVbrxdPWbU7Z5WL0sH8X6uXhaLtbCSMyDKGVZlZhYk1S20vPMaCyjNJ8D5BqjlKTFHCojIUq0MRSXqbUDkJm41LayJKfsZtztXfd-IB_Urju4drhUUQyIGUYyG1rR2DKu895RpXpX77U7KgT1bVGNFtVgUf1YVDhAcoT8UG7fyP1N_0N9AZKcdgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501181238</pqid></control><display><type>article</type><title>A systematic review of the Uridine diphosphate-Galactose/Glucose-4-epimerase (UGE) in plants</title><source>Springer Nature - Complete Springer Journals</source><creator>Hou, Jiaming ; Tian, Shaokai ; Yang, Lin ; Zhang, Zhixin ; Liu, Ying</creator><creatorcontrib>Hou, Jiaming ; Tian, Shaokai ; Yang, Lin ; Zhang, Zhixin ; Liu, Ying</creatorcontrib><description>Uridine diphosphate (UDP)-Galactose/Glucose-4-epimerase (UGE) is the third enzyme involved in the Leloir pathway. It catalyzes the conversion of UDP-Galactose to UDP-Glucose, which is a rate-limiting step for polysaccharides biosynthesis. As the main cell wall materials, polysaccharides play an irreplaceable role throughout the whole life history of plant. In this review, 1243 UGE mRNA sequences registered in NCBI were obtained and their evolutionary relationship was analyzed by constructing a neighbor-joining tree based on representative sequences. The physicochemical properties of 15 specific UGEs were analyzed, and four UGE sequences of Setaria italica , Zea mays , Ricinus Communis , and Oryza sativa were selected for further secondary structure, three-dimensional protein modeling, transmembrane structure, and signal peptide prediction analyses. The results demonstrate that UGEs are mostly conservative without signal peptides and exert activities in cytoplasm. Then, studies related to the catalytic reaction, characteristic structure, function, and regulation of UGE were summarized, which provide strong evidence that UGE plays a crucial role in cell growth, cell differentiation, cell-to-cell communication, primary metabolism, secondary metabolism, and defense responses. However, the molecular mechanisms whereby UGE regulates the plant stress resistance and useful secondary metabolites accumulation are far from clear. This paper will lay a foundation for further studies and applications of UGE.</description><identifier>ISSN: 0167-6903</identifier><identifier>EISSN: 1573-5087</identifier><identifier>DOI: 10.1007/s10725-020-00686-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agriculture ; Biomedical and Life Sciences ; Biosynthesis ; Cell differentiation ; Cell growth ; Cell interactions ; Cell walls ; Cytoplasm ; Differentiation (biology) ; Epimerase ; Galactose ; Gene sequencing ; Glucose ; Life history ; Life Sciences ; Metabolism ; Metabolites ; Molecular modelling ; mRNA ; Peptides ; Physicochemical properties ; Plant Anatomy/Development ; Plant Physiology ; Plant Sciences ; Plant stress ; Polysaccharides ; Protein structure ; Review Paper ; Saccharides ; Secondary metabolites ; Secondary structure ; Signal peptides ; Structure-function relationships ; Three dimensional models ; Uridine</subject><ispartof>Plant growth regulation, 2021-04, Vol.93 (3), p.267-278</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b3bfb16dc6fdfa48ca1b2794009a127e3d190fc3026acce5b7ddfb18c5badfde3</citedby><cites>FETCH-LOGICAL-c319t-b3bfb16dc6fdfa48ca1b2794009a127e3d190fc3026acce5b7ddfb18c5badfde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10725-020-00686-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10725-020-00686-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hou, Jiaming</creatorcontrib><creatorcontrib>Tian, Shaokai</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Zhang, Zhixin</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><title>A systematic review of the Uridine diphosphate-Galactose/Glucose-4-epimerase (UGE) in plants</title><title>Plant growth regulation</title><addtitle>Plant Growth Regul</addtitle><description>Uridine diphosphate (UDP)-Galactose/Glucose-4-epimerase (UGE) is the third enzyme involved in the Leloir pathway. It catalyzes the conversion of UDP-Galactose to UDP-Glucose, which is a rate-limiting step for polysaccharides biosynthesis. As the main cell wall materials, polysaccharides play an irreplaceable role throughout the whole life history of plant. In this review, 1243 UGE mRNA sequences registered in NCBI were obtained and their evolutionary relationship was analyzed by constructing a neighbor-joining tree based on representative sequences. The physicochemical properties of 15 specific UGEs were analyzed, and four UGE sequences of Setaria italica , Zea mays , Ricinus Communis , and Oryza sativa were selected for further secondary structure, three-dimensional protein modeling, transmembrane structure, and signal peptide prediction analyses. The results demonstrate that UGEs are mostly conservative without signal peptides and exert activities in cytoplasm. Then, studies related to the catalytic reaction, characteristic structure, function, and regulation of UGE were summarized, which provide strong evidence that UGE plays a crucial role in cell growth, cell differentiation, cell-to-cell communication, primary metabolism, secondary metabolism, and defense responses. However, the molecular mechanisms whereby UGE regulates the plant stress resistance and useful secondary metabolites accumulation are far from clear. This paper will lay a foundation for further studies and applications of UGE.</description><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cell differentiation</subject><subject>Cell growth</subject><subject>Cell interactions</subject><subject>Cell walls</subject><subject>Cytoplasm</subject><subject>Differentiation (biology)</subject><subject>Epimerase</subject><subject>Galactose</subject><subject>Gene sequencing</subject><subject>Glucose</subject><subject>Life history</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Peptides</subject><subject>Physicochemical properties</subject><subject>Plant Anatomy/Development</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant stress</subject><subject>Polysaccharides</subject><subject>Protein structure</subject><subject>Review Paper</subject><subject>Saccharides</subject><subject>Secondary metabolites</subject><subject>Secondary structure</subject><subject>Signal peptides</subject><subject>Structure-function relationships</subject><subject>Three dimensional models</subject><subject>Uridine</subject><issn>0167-6903</issn><issn>1573-5087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1Lw0AURQdRsFb_gKsBN7oY-16m-VqWUqNQcGN3wjCZebEpaRJnpkr_vdEI7lzdzT33wmHsGuEeAdKZR0ijWEAEAiDJEoEnbIJxKkUMWXrKJoBJKpIc5Dm78H4HAFkW44S9Lrg_-kB7HWrDHX3U9Mm7ioct8Y2rbd0St3W_7Xy_1YFEoRttQudpVjQHM6SYC-rrPTntid9uitUdr1veN7oN_pKdVbrxdPWbU7Z5WL0sH8X6uXhaLtbCSMyDKGVZlZhYk1S20vPMaCyjNJ8D5BqjlKTFHCojIUq0MRSXqbUDkJm41LayJKfsZtztXfd-IB_Urju4drhUUQyIGUYyG1rR2DKu895RpXpX77U7KgT1bVGNFtVgUf1YVDhAcoT8UG7fyP1N_0N9AZKcdgc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hou, Jiaming</creator><creator>Tian, Shaokai</creator><creator>Yang, Lin</creator><creator>Zhang, Zhixin</creator><creator>Liu, Ying</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210401</creationdate><title>A systematic review of the Uridine diphosphate-Galactose/Glucose-4-epimerase (UGE) in plants</title><author>Hou, Jiaming ; Tian, Shaokai ; Yang, Lin ; Zhang, Zhixin ; Liu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b3bfb16dc6fdfa48ca1b2794009a127e3d190fc3026acce5b7ddfb18c5badfde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cell differentiation</topic><topic>Cell growth</topic><topic>Cell interactions</topic><topic>Cell walls</topic><topic>Cytoplasm</topic><topic>Differentiation (biology)</topic><topic>Epimerase</topic><topic>Galactose</topic><topic>Gene sequencing</topic><topic>Glucose</topic><topic>Life history</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Peptides</topic><topic>Physicochemical properties</topic><topic>Plant Anatomy/Development</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant stress</topic><topic>Polysaccharides</topic><topic>Protein structure</topic><topic>Review Paper</topic><topic>Saccharides</topic><topic>Secondary metabolites</topic><topic>Secondary structure</topic><topic>Signal peptides</topic><topic>Structure-function relationships</topic><topic>Three dimensional models</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Jiaming</creatorcontrib><creatorcontrib>Tian, Shaokai</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Zhang, Zhixin</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Plant growth regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Jiaming</au><au>Tian, Shaokai</au><au>Yang, Lin</au><au>Zhang, Zhixin</au><au>Liu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic review of the Uridine diphosphate-Galactose/Glucose-4-epimerase (UGE) in plants</atitle><jtitle>Plant growth regulation</jtitle><stitle>Plant Growth Regul</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>93</volume><issue>3</issue><spage>267</spage><epage>278</epage><pages>267-278</pages><issn>0167-6903</issn><eissn>1573-5087</eissn><abstract>Uridine diphosphate (UDP)-Galactose/Glucose-4-epimerase (UGE) is the third enzyme involved in the Leloir pathway. It catalyzes the conversion of UDP-Galactose to UDP-Glucose, which is a rate-limiting step for polysaccharides biosynthesis. As the main cell wall materials, polysaccharides play an irreplaceable role throughout the whole life history of plant. In this review, 1243 UGE mRNA sequences registered in NCBI were obtained and their evolutionary relationship was analyzed by constructing a neighbor-joining tree based on representative sequences. The physicochemical properties of 15 specific UGEs were analyzed, and four UGE sequences of Setaria italica , Zea mays , Ricinus Communis , and Oryza sativa were selected for further secondary structure, three-dimensional protein modeling, transmembrane structure, and signal peptide prediction analyses. The results demonstrate that UGEs are mostly conservative without signal peptides and exert activities in cytoplasm. Then, studies related to the catalytic reaction, characteristic structure, function, and regulation of UGE were summarized, which provide strong evidence that UGE plays a crucial role in cell growth, cell differentiation, cell-to-cell communication, primary metabolism, secondary metabolism, and defense responses. However, the molecular mechanisms whereby UGE regulates the plant stress resistance and useful secondary metabolites accumulation are far from clear. This paper will lay a foundation for further studies and applications of UGE.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10725-020-00686-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6903
ispartof Plant growth regulation, 2021-04, Vol.93 (3), p.267-278
issn 0167-6903
1573-5087
language eng
recordid cdi_proquest_journals_2501181238
source Springer Nature - Complete Springer Journals
subjects Agriculture
Biomedical and Life Sciences
Biosynthesis
Cell differentiation
Cell growth
Cell interactions
Cell walls
Cytoplasm
Differentiation (biology)
Epimerase
Galactose
Gene sequencing
Glucose
Life history
Life Sciences
Metabolism
Metabolites
Molecular modelling
mRNA
Peptides
Physicochemical properties
Plant Anatomy/Development
Plant Physiology
Plant Sciences
Plant stress
Polysaccharides
Protein structure
Review Paper
Saccharides
Secondary metabolites
Secondary structure
Signal peptides
Structure-function relationships
Three dimensional models
Uridine
title A systematic review of the Uridine diphosphate-Galactose/Glucose-4-epimerase (UGE) in plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20review%20of%20the%20Uridine%20diphosphate-Galactose/Glucose-4-epimerase%20(UGE)%20in%20plants&rft.jtitle=Plant%20growth%20regulation&rft.au=Hou,%20Jiaming&rft.date=2021-04-01&rft.volume=93&rft.issue=3&rft.spage=267&rft.epage=278&rft.pages=267-278&rft.issn=0167-6903&rft.eissn=1573-5087&rft_id=info:doi/10.1007/s10725-020-00686-1&rft_dat=%3Cproquest_cross%3E2501181238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501181238&rft_id=info:pmid/&rfr_iscdi=true