Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach

Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-03, Vol.2021, p.1-14
Hauptverfasser: Tran, Ngoc Thoai, Dao, Thanh-Phong, Nguyen-Trang, Thao, Ha, Che-Ngoc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Tran, Ngoc Thoai
Dao, Thanh-Phong
Nguyen-Trang, Thao
Ha, Che-Ngoc
description Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism.
doi_str_mv 10.1155/2021/6672811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501177230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501177230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQjx3HybIUApVKiwRI7CLHj9ZVmwQ7UdW_J1W7ZjWzOLp35iB0C-QRgPMRJRRGSSJoCnCGBsATFnGIxXm_ExpHQNnPJboKYU16kkM6QPLDG-1U6-oK1xbnsnXLzuCZswbb2mOJ52aHafS8yPGk3jYbJ6sWvxu1kpULW1zu8WTThdZ4Vy2jJxmMxuN5Pv3E46bxtVSra3Rh5SaYm9Mcou_85WvyFs0Wr9PJeBYpxkQbMVEKkmap4qUQidGZFjwTjMS0LOFwrixpalUWg4q17b_iVpZMikxrJVKbsiG6O-b2tb-dCW2xrjtf9ZUF5QRACMpITz0cKeXrELyxRePdVvp9AaQ4SCwOEouTxB6_P-IrV2m5c__Tf7QTbq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501177230</pqid></control><display><type>article</type><title>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tran, Ngoc Thoai ; Dao, Thanh-Phong ; Nguyen-Trang, Thao ; Ha, Che-Ngoc</creator><contributor>Lin, Mingwei ; Mingwei Lin</contributor><creatorcontrib>Tran, Ngoc Thoai ; Dao, Thanh-Phong ; Nguyen-Trang, Thao ; Ha, Che-Ngoc ; Lin, Mingwei ; Mingwei Lin</creatorcontrib><description>Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6672811</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Adaptive algorithms ; Adaptive systems ; Algorithms ; Artificial neural networks ; Behavior ; Civil engineering ; Clustering ; Degrees of freedom ; Engineering ; Evolutionary algorithms ; Evolutionary computation ; Fatigue life ; Fuzzy logic ; Fuzzy sets ; Kinematics ; Life prediction ; Neural networks ; Partial differential equations ; Statistical tests</subject><ispartof>Mathematical problems in engineering, 2021-03, Vol.2021, p.1-14</ispartof><rights>Copyright © 2021 Ngoc Thoai Tran et al.</rights><rights>Copyright © 2021 Ngoc Thoai Tran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</citedby><cites>FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</cites><orcidid>0000-0003-2635-5371 ; 0000-0002-9009-2732 ; 0000-0001-9165-4680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Lin, Mingwei</contributor><contributor>Mingwei Lin</contributor><creatorcontrib>Tran, Ngoc Thoai</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Nguyen-Trang, Thao</creatorcontrib><creatorcontrib>Ha, Che-Ngoc</creatorcontrib><title>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</title><title>Mathematical problems in engineering</title><description>Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Behavior</subject><subject>Civil engineering</subject><subject>Clustering</subject><subject>Degrees of freedom</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Fatigue life</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Kinematics</subject><subject>Life prediction</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Statistical tests</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQjx3HybIUApVKiwRI7CLHj9ZVmwQ7UdW_J1W7ZjWzOLp35iB0C-QRgPMRJRRGSSJoCnCGBsATFnGIxXm_ExpHQNnPJboKYU16kkM6QPLDG-1U6-oK1xbnsnXLzuCZswbb2mOJ52aHafS8yPGk3jYbJ6sWvxu1kpULW1zu8WTThdZ4Vy2jJxmMxuN5Pv3E46bxtVSra3Rh5SaYm9Mcou_85WvyFs0Wr9PJeBYpxkQbMVEKkmap4qUQidGZFjwTjMS0LOFwrixpalUWg4q17b_iVpZMikxrJVKbsiG6O-b2tb-dCW2xrjtf9ZUF5QRACMpITz0cKeXrELyxRePdVvp9AaQ4SCwOEouTxB6_P-IrV2m5c__Tf7QTbq4</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Tran, Ngoc Thoai</creator><creator>Dao, Thanh-Phong</creator><creator>Nguyen-Trang, Thao</creator><creator>Ha, Che-Ngoc</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2635-5371</orcidid><orcidid>https://orcid.org/0000-0002-9009-2732</orcidid><orcidid>https://orcid.org/0000-0001-9165-4680</orcidid></search><sort><creationdate>20210302</creationdate><title>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</title><author>Tran, Ngoc Thoai ; Dao, Thanh-Phong ; Nguyen-Trang, Thao ; Ha, Che-Ngoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Behavior</topic><topic>Civil engineering</topic><topic>Clustering</topic><topic>Degrees of freedom</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Fatigue life</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Kinematics</topic><topic>Life prediction</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Ngoc Thoai</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Nguyen-Trang, Thao</creatorcontrib><creatorcontrib>Ha, Che-Ngoc</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Ngoc Thoai</au><au>Dao, Thanh-Phong</au><au>Nguyen-Trang, Thao</au><au>Ha, Che-Ngoc</au><au>Lin, Mingwei</au><au>Mingwei Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-03-02</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6672811</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2635-5371</orcidid><orcidid>https://orcid.org/0000-0002-9009-2732</orcidid><orcidid>https://orcid.org/0000-0001-9165-4680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021-03, Vol.2021, p.1-14
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2501177230
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adaptive algorithms
Adaptive systems
Algorithms
Artificial neural networks
Behavior
Civil engineering
Clustering
Degrees of freedom
Engineering
Evolutionary algorithms
Evolutionary computation
Fatigue life
Fuzzy logic
Fuzzy sets
Kinematics
Life prediction
Neural networks
Partial differential equations
Statistical tests
title Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Fatigue%20Life%20for%20a%20New%202-DOF%20Compliant%20Mechanism%20by%20Clustering-Based%20ANFIS%20Approach&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Tran,%20Ngoc%20Thoai&rft.date=2021-03-02&rft.volume=2021&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6672811&rft_dat=%3Cproquest_cross%3E2501177230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501177230&rft_id=info:pmid/&rfr_iscdi=true