Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach
Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not be...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-03, Vol.2021, p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Tran, Ngoc Thoai Dao, Thanh-Phong Nguyen-Trang, Thao Ha, Che-Ngoc |
description | Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism. |
doi_str_mv | 10.1155/2021/6672811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501177230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501177230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQjx3HybIUApVKiwRI7CLHj9ZVmwQ7UdW_J1W7ZjWzOLp35iB0C-QRgPMRJRRGSSJoCnCGBsATFnGIxXm_ExpHQNnPJboKYU16kkM6QPLDG-1U6-oK1xbnsnXLzuCZswbb2mOJ52aHafS8yPGk3jYbJ6sWvxu1kpULW1zu8WTThdZ4Vy2jJxmMxuN5Pv3E46bxtVSra3Rh5SaYm9Mcou_85WvyFs0Wr9PJeBYpxkQbMVEKkmap4qUQidGZFjwTjMS0LOFwrixpalUWg4q17b_iVpZMikxrJVKbsiG6O-b2tb-dCW2xrjtf9ZUF5QRACMpITz0cKeXrELyxRePdVvp9AaQ4SCwOEouTxB6_P-IrV2m5c__Tf7QTbq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501177230</pqid></control><display><type>article</type><title>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Tran, Ngoc Thoai ; Dao, Thanh-Phong ; Nguyen-Trang, Thao ; Ha, Che-Ngoc</creator><contributor>Lin, Mingwei ; Mingwei Lin</contributor><creatorcontrib>Tran, Ngoc Thoai ; Dao, Thanh-Phong ; Nguyen-Trang, Thao ; Ha, Che-Ngoc ; Lin, Mingwei ; Mingwei Lin</creatorcontrib><description>Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6672811</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Adaptive algorithms ; Adaptive systems ; Algorithms ; Artificial neural networks ; Behavior ; Civil engineering ; Clustering ; Degrees of freedom ; Engineering ; Evolutionary algorithms ; Evolutionary computation ; Fatigue life ; Fuzzy logic ; Fuzzy sets ; Kinematics ; Life prediction ; Neural networks ; Partial differential equations ; Statistical tests</subject><ispartof>Mathematical problems in engineering, 2021-03, Vol.2021, p.1-14</ispartof><rights>Copyright © 2021 Ngoc Thoai Tran et al.</rights><rights>Copyright © 2021 Ngoc Thoai Tran et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</citedby><cites>FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</cites><orcidid>0000-0003-2635-5371 ; 0000-0002-9009-2732 ; 0000-0001-9165-4680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Lin, Mingwei</contributor><contributor>Mingwei Lin</contributor><creatorcontrib>Tran, Ngoc Thoai</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Nguyen-Trang, Thao</creatorcontrib><creatorcontrib>Ha, Che-Ngoc</creatorcontrib><title>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</title><title>Mathematical problems in engineering</title><description>Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Behavior</subject><subject>Civil engineering</subject><subject>Clustering</subject><subject>Degrees of freedom</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Fatigue life</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Kinematics</subject><subject>Life prediction</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Statistical tests</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMssYRQjx3HybIUApVKiwRI7CLHj9ZVmwQ7UdW_J1W7ZjWzOLp35iB0C-QRgPMRJRRGSSJoCnCGBsATFnGIxXm_ExpHQNnPJboKYU16kkM6QPLDG-1U6-oK1xbnsnXLzuCZswbb2mOJ52aHafS8yPGk3jYbJ6sWvxu1kpULW1zu8WTThdZ4Vy2jJxmMxuN5Pv3E46bxtVSra3Rh5SaYm9Mcou_85WvyFs0Wr9PJeBYpxkQbMVEKkmap4qUQidGZFjwTjMS0LOFwrixpalUWg4q17b_iVpZMikxrJVKbsiG6O-b2tb-dCW2xrjtf9ZUF5QRACMpITz0cKeXrELyxRePdVvp9AaQ4SCwOEouTxB6_P-IrV2m5c__Tf7QTbq4</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Tran, Ngoc Thoai</creator><creator>Dao, Thanh-Phong</creator><creator>Nguyen-Trang, Thao</creator><creator>Ha, Che-Ngoc</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2635-5371</orcidid><orcidid>https://orcid.org/0000-0002-9009-2732</orcidid><orcidid>https://orcid.org/0000-0001-9165-4680</orcidid></search><sort><creationdate>20210302</creationdate><title>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</title><author>Tran, Ngoc Thoai ; Dao, Thanh-Phong ; Nguyen-Trang, Thao ; Ha, Che-Ngoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-37b70898c5b776ed9d75973042bb10021ab28fc941c4df5145fab3a79ddc78f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Behavior</topic><topic>Civil engineering</topic><topic>Clustering</topic><topic>Degrees of freedom</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Fatigue life</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Kinematics</topic><topic>Life prediction</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Ngoc Thoai</creatorcontrib><creatorcontrib>Dao, Thanh-Phong</creatorcontrib><creatorcontrib>Nguyen-Trang, Thao</creatorcontrib><creatorcontrib>Ha, Che-Ngoc</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Ngoc Thoai</au><au>Dao, Thanh-Phong</au><au>Nguyen-Trang, Thao</au><au>Ha, Che-Ngoc</au><au>Lin, Mingwei</au><au>Mingwei Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-03-02</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Two-degree-of-freedom (2-DOF) compliant mechanism has some outstanding characteristics in accurate positioning systems. Studying the fatigue life for the 2-DOF compliant mechanism is a meaningful task to ensure a long working. However, a study for fatigue life prediction of this mechanism has not been conducted so far. In this article, a method for fatigue life prediction of 2-DOF compliant mechanism is developed for the first time. This method is the combining of the differential evolution algorithm and the adaptive neuro-fuzzy inference system (ANFIS) with subtractive clustering. The numerical results on two case studies consisting of material steel A-36 and the material AL 6061-T6 show that the accuracy of the proposed method is very high. Compared to the actual fatigue life, the root mean square error of the proposed method lies in the range [1.7, 3.97] cycles for Case 1 and [2.03, 10.38] cycles for Case 2. The statistical test also indicates that the proposed method outperforms the traditional method using triangular membership function, bell-shape, and Gaussian membership function, with the significance level from 0.05 to 0.1. These results demonstrate the feasibility of the proposed approach in fatigue life prediction of 2-DOF compliant mechanism.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6672811</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2635-5371</orcidid><orcidid>https://orcid.org/0000-0002-9009-2732</orcidid><orcidid>https://orcid.org/0000-0001-9165-4680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021-03, Vol.2021, p.1-14 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2501177230 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adaptive algorithms Adaptive systems Algorithms Artificial neural networks Behavior Civil engineering Clustering Degrees of freedom Engineering Evolutionary algorithms Evolutionary computation Fatigue life Fuzzy logic Fuzzy sets Kinematics Life prediction Neural networks Partial differential equations Statistical tests |
title | Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by Clustering-Based ANFIS Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Fatigue%20Life%20for%20a%20New%202-DOF%20Compliant%20Mechanism%20by%20Clustering-Based%20ANFIS%20Approach&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Tran,%20Ngoc%20Thoai&rft.date=2021-03-02&rft.volume=2021&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6672811&rft_dat=%3Cproquest_cross%3E2501177230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501177230&rft_id=info:pmid/&rfr_iscdi=true |