Efficient GSW-Style Fully Homomorphic Encryption over the Integers

We propose a GSW-style fully homomorphic encryption scheme over the integers (FHE-OI) that is more efficient than the prior work by Benarroch et al. (PKC 2017). To reduce the expansion of ciphertexts, our scheme consists of two types of ciphertexts: integers and vectors. Moreover, the computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2021-03, Vol.2021, p.1-13
Hauptverfasser: Zhao, Jianan, Huang, Ruwei, Yang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2021
creator Zhao, Jianan
Huang, Ruwei
Yang, Bo
description We propose a GSW-style fully homomorphic encryption scheme over the integers (FHE-OI) that is more efficient than the prior work by Benarroch et al. (PKC 2017). To reduce the expansion of ciphertexts, our scheme consists of two types of ciphertexts: integers and vectors. Moreover, the computational efficiency in the homomorphic evaluation can be improved by hybrid homomorphic operations between integers and vectors. In particular, when performing vector-integer multiplications, the evaluation has the computational complexity of Ογ log γ and thus outperforms all prior FHE-OI schemes. To slow down the noise growth in homomorphic multiplications, we introduce a new noise management method called sequentialization; therefore, the noise in the resulting ciphertext increases by a factor of l⋅polyλ rather than polyλl in general multiplications, where l is the number of multiplications. As a result, the circuit with larger multiplicative depth can be evaluated under the same parameter settings. Finally, to further reduce the size of ciphertexts, we apply ciphertext truncation and obtain the integer ciphertext of size Ολ log λ, thus additionally reducing the size of the vector ciphertext in Benarroch’s scheme from Ο˜λ4 to Ολ2log2 λ.
doi_str_mv 10.1155/2021/8823787
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2501177140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501177140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5a040aaa70c0be658c8d17f98ec27221dd967d5f2a23126efe04a55683a8bf6c3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKc3P0DAo9YladKkRx37BwMPUzyGLE1sRtfWJHP029vR4VHew_seHt4fvweAe4yeMWZsQhDBEyFIygW_ACOcp3mCMCGXfzem1-AmhB1CGaacjsDrzFqnnakjXGw-k03sKgPnh6rq4LLZ9-Pb0mk4q7Xv2uiaGjY_xsNYGriqo_kyPtyCK6uqYO7Oeww-5rP36TJZvy1W05d1oklOY8IUokgpxZFGW5MxoUWBuc2F0YQTgosiz3jBLFEkxSQz1iCqGMtEqsTWZjodg4fhb-ub74MJUe6ag6_7SElYX41zTFFPPQ2U9k0I3ljZerdXvpMYyZMlebIkz5Z6_HHAS1cX6uj-p38BxJllwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501177140</pqid></control><display><type>article</type><title>Efficient GSW-Style Fully Homomorphic Encryption over the Integers</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Jianan ; Huang, Ruwei ; Yang, Bo</creator><contributor>Del Rey, Angel M.</contributor><creatorcontrib>Zhao, Jianan ; Huang, Ruwei ; Yang, Bo ; Del Rey, Angel M.</creatorcontrib><description>We propose a GSW-style fully homomorphic encryption scheme over the integers (FHE-OI) that is more efficient than the prior work by Benarroch et al. (PKC 2017). To reduce the expansion of ciphertexts, our scheme consists of two types of ciphertexts: integers and vectors. Moreover, the computational efficiency in the homomorphic evaluation can be improved by hybrid homomorphic operations between integers and vectors. In particular, when performing vector-integer multiplications, the evaluation has the computational complexity of Ογ log γ and thus outperforms all prior FHE-OI schemes. To slow down the noise growth in homomorphic multiplications, we introduce a new noise management method called sequentialization; therefore, the noise in the resulting ciphertext increases by a factor of l⋅polyλ rather than polyλl in general multiplications, where l is the number of multiplications. As a result, the circuit with larger multiplicative depth can be evaluated under the same parameter settings. Finally, to further reduce the size of ciphertexts, we apply ciphertext truncation and obtain the integer ciphertext of size Ολ log λ, thus additionally reducing the size of the vector ciphertext in Benarroch’s scheme from Ο˜λ4 to Ολ2log2 λ.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/8823787</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Circuits ; Data encryption ; Decomposition ; Efficiency ; Encryption ; Integers ; Noise ; Noise control</subject><ispartof>Security and communication networks, 2021-03, Vol.2021, p.1-13</ispartof><rights>Copyright © 2021 Jianan Zhao et al.</rights><rights>Copyright © 2021 Jianan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-5a040aaa70c0be658c8d17f98ec27221dd967d5f2a23126efe04a55683a8bf6c3</cites><orcidid>0000-0003-0576-9364 ; 0000-0002-2459-8823 ; 0000-0002-1859-3436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Del Rey, Angel M.</contributor><creatorcontrib>Zhao, Jianan</creatorcontrib><creatorcontrib>Huang, Ruwei</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><title>Efficient GSW-Style Fully Homomorphic Encryption over the Integers</title><title>Security and communication networks</title><description>We propose a GSW-style fully homomorphic encryption scheme over the integers (FHE-OI) that is more efficient than the prior work by Benarroch et al. (PKC 2017). To reduce the expansion of ciphertexts, our scheme consists of two types of ciphertexts: integers and vectors. Moreover, the computational efficiency in the homomorphic evaluation can be improved by hybrid homomorphic operations between integers and vectors. In particular, when performing vector-integer multiplications, the evaluation has the computational complexity of Ογ log γ and thus outperforms all prior FHE-OI schemes. To slow down the noise growth in homomorphic multiplications, we introduce a new noise management method called sequentialization; therefore, the noise in the resulting ciphertext increases by a factor of l⋅polyλ rather than polyλl in general multiplications, where l is the number of multiplications. As a result, the circuit with larger multiplicative depth can be evaluated under the same parameter settings. Finally, to further reduce the size of ciphertexts, we apply ciphertext truncation and obtain the integer ciphertext of size Ολ log λ, thus additionally reducing the size of the vector ciphertext in Benarroch’s scheme from Ο˜λ4 to Ολ2log2 λ.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Data encryption</subject><subject>Decomposition</subject><subject>Efficiency</subject><subject>Encryption</subject><subject>Integers</subject><subject>Noise</subject><subject>Noise control</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9LwzAYh4MoOKc3P0DAo9YladKkRx37BwMPUzyGLE1sRtfWJHP029vR4VHew_seHt4fvweAe4yeMWZsQhDBEyFIygW_ACOcp3mCMCGXfzem1-AmhB1CGaacjsDrzFqnnakjXGw-k03sKgPnh6rq4LLZ9-Pb0mk4q7Xv2uiaGjY_xsNYGriqo_kyPtyCK6uqYO7Oeww-5rP36TJZvy1W05d1oklOY8IUokgpxZFGW5MxoUWBuc2F0YQTgosiz3jBLFEkxSQz1iCqGMtEqsTWZjodg4fhb-ub74MJUe6ag6_7SElYX41zTFFPPQ2U9k0I3ljZerdXvpMYyZMlebIkz5Z6_HHAS1cX6uj-p38BxJllwg</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Zhao, Jianan</creator><creator>Huang, Ruwei</creator><creator>Yang, Bo</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0576-9364</orcidid><orcidid>https://orcid.org/0000-0002-2459-8823</orcidid><orcidid>https://orcid.org/0000-0002-1859-3436</orcidid></search><sort><creationdate>20210305</creationdate><title>Efficient GSW-Style Fully Homomorphic Encryption over the Integers</title><author>Zhao, Jianan ; Huang, Ruwei ; Yang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5a040aaa70c0be658c8d17f98ec27221dd967d5f2a23126efe04a55683a8bf6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Data encryption</topic><topic>Decomposition</topic><topic>Efficiency</topic><topic>Encryption</topic><topic>Integers</topic><topic>Noise</topic><topic>Noise control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jianan</creatorcontrib><creatorcontrib>Huang, Ruwei</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jianan</au><au>Huang, Ruwei</au><au>Yang, Bo</au><au>Del Rey, Angel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient GSW-Style Fully Homomorphic Encryption over the Integers</atitle><jtitle>Security and communication networks</jtitle><date>2021-03-05</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>We propose a GSW-style fully homomorphic encryption scheme over the integers (FHE-OI) that is more efficient than the prior work by Benarroch et al. (PKC 2017). To reduce the expansion of ciphertexts, our scheme consists of two types of ciphertexts: integers and vectors. Moreover, the computational efficiency in the homomorphic evaluation can be improved by hybrid homomorphic operations between integers and vectors. In particular, when performing vector-integer multiplications, the evaluation has the computational complexity of Ογ log γ and thus outperforms all prior FHE-OI schemes. To slow down the noise growth in homomorphic multiplications, we introduce a new noise management method called sequentialization; therefore, the noise in the resulting ciphertext increases by a factor of l⋅polyλ rather than polyλl in general multiplications, where l is the number of multiplications. As a result, the circuit with larger multiplicative depth can be evaluated under the same parameter settings. Finally, to further reduce the size of ciphertexts, we apply ciphertext truncation and obtain the integer ciphertext of size Ολ log λ, thus additionally reducing the size of the vector ciphertext in Benarroch’s scheme from Ο˜λ4 to Ολ2log2 λ.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2021/8823787</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0576-9364</orcidid><orcidid>https://orcid.org/0000-0002-2459-8823</orcidid><orcidid>https://orcid.org/0000-0002-1859-3436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2021-03, Vol.2021, p.1-13
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2501177140
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Circuits
Data encryption
Decomposition
Efficiency
Encryption
Integers
Noise
Noise control
title Efficient GSW-Style Fully Homomorphic Encryption over the Integers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20GSW-Style%20Fully%20Homomorphic%20Encryption%20over%20the%20Integers&rft.jtitle=Security%20and%20communication%20networks&rft.au=Zhao,%20Jianan&rft.date=2021-03-05&rft.volume=2021&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/8823787&rft_dat=%3Cproquest_cross%3E2501177140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501177140&rft_id=info:pmid/&rfr_iscdi=true