Safety Factor on Rock Slopes with Tensile Cracks Using Numerical and Limit Equilibrium Models

Through the research it describes an analytic methodology, which allows to determine the minimum safety factor depending on the depth of tensile crack and the inclination of surface failure on the most critical condition, considering at the same time, surcharge, seismic effect and water pressure. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2021-03, Vol.39 (3), p.2287-2300
Hauptverfasser: Belandria, Norly, Úcar, Roberto, Corredor, Alfredo, Hassani, Ferri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2300
container_issue 3
container_start_page 2287
container_title Geotechnical and geological engineering
container_volume 39
creator Belandria, Norly
Úcar, Roberto
Corredor, Alfredo
Hassani, Ferri
description Through the research it describes an analytic methodology, which allows to determine the minimum safety factor depending on the depth of tensile crack and the inclination of surface failure on the most critical condition, considering at the same time, surcharge, seismic effect and water pressure. Therefore, it studies the stability of rock slopes considering that the potential of failure surface it is constituted by two blocks with different inclinations. The superior block is limited by a tensile crack that is represented by a fracture without displacement. On the other hand, on the inferior block, geometry is formed by a potential slide plane of α inclination with the horizontal axis, in which are acting shear stresses. Fracture on superior block is characterized by a normal-tensile stresses field that act over the crack whose presence originates when the rock loses its original cohesion. Finally, comparisons are made through examples with the limit equilibrium method and finite elements method, where it determines the safety factor on dry state, water and seism, being all of them too similar. Besides, the methodology compares the track depth and the distance between the intersection point of tensile crack and the edge of the slope face, results shows that the analytic methodology is very conservative and throws the less values of this distances.
doi_str_mv 10.1007/s10706-020-01624-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500691064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500691064</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-f6716080e6e010060e4b30bc00d9c61ae8ef5322ee6a7de77c0f0631a64d65f23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaM7cRJlqhqAamARNslslxnUtzm0dqJUP-eQJDYsZrNvedqDiHXHG45QHIXOCSgGAhgwJWIWHpCRjxOJOOxyE7JCDIFTPJUnJOLELYAIBTwEXlfmALbI50Z2zaeNjV9a-yOLspmj4F-uvaDLrEOrkQ68cbuAl0FV2_oS1ehd9aU1NQ5nbvKtXR66Fzp1t51FX1ucizDJTkrTBnw6veOyWo2XU4e2fz14WlyP2dGRqJlhUq4ghRQIfTvKMBoLWFtAfLMKm4wxSKWQiAqk-SYJBYKUJIbFeUqLoQck5uBu_fNocPQ6m3T-bqf1CLugRkHFfUpMaSsb0LwWOi9d5XxR81Bf2vUg0bda9Q_GnXal-RQCn243qD_Q__T-gKqeHR5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500691064</pqid></control><display><type>article</type><title>Safety Factor on Rock Slopes with Tensile Cracks Using Numerical and Limit Equilibrium Models</title><source>Springer Nature - Complete Springer Journals</source><creator>Belandria, Norly ; Úcar, Roberto ; Corredor, Alfredo ; Hassani, Ferri</creator><creatorcontrib>Belandria, Norly ; Úcar, Roberto ; Corredor, Alfredo ; Hassani, Ferri</creatorcontrib><description>Through the research it describes an analytic methodology, which allows to determine the minimum safety factor depending on the depth of tensile crack and the inclination of surface failure on the most critical condition, considering at the same time, surcharge, seismic effect and water pressure. Therefore, it studies the stability of rock slopes considering that the potential of failure surface it is constituted by two blocks with different inclinations. The superior block is limited by a tensile crack that is represented by a fracture without displacement. On the other hand, on the inferior block, geometry is formed by a potential slide plane of α inclination with the horizontal axis, in which are acting shear stresses. Fracture on superior block is characterized by a normal-tensile stresses field that act over the crack whose presence originates when the rock loses its original cohesion. Finally, comparisons are made through examples with the limit equilibrium method and finite elements method, where it determines the safety factor on dry state, water and seism, being all of them too similar. Besides, the methodology compares the track depth and the distance between the intersection point of tensile crack and the edge of the slope face, results shows that the analytic methodology is very conservative and throws the less values of this distances.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-020-01624-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Failure surface ; Finite element method ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrostatic pressure ; Inclination ; Methodology ; Original Paper ; Pressure effects ; Rocks ; Safety ; Safety factors ; Seismic effects ; Seismic stability ; Shear stress ; Slope stability ; Stresses ; Terrestrial Pollution ; Waste Management/Waste Technology ; Water pressure</subject><ispartof>Geotechnical and geological engineering, 2021-03, Vol.39 (3), p.2287-2300</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-f6716080e6e010060e4b30bc00d9c61ae8ef5322ee6a7de77c0f0631a64d65f23</citedby><cites>FETCH-LOGICAL-a342t-f6716080e6e010060e4b30bc00d9c61ae8ef5322ee6a7de77c0f0631a64d65f23</cites><orcidid>0000-0002-9485-0860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-020-01624-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-020-01624-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Belandria, Norly</creatorcontrib><creatorcontrib>Úcar, Roberto</creatorcontrib><creatorcontrib>Corredor, Alfredo</creatorcontrib><creatorcontrib>Hassani, Ferri</creatorcontrib><title>Safety Factor on Rock Slopes with Tensile Cracks Using Numerical and Limit Equilibrium Models</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>Through the research it describes an analytic methodology, which allows to determine the minimum safety factor depending on the depth of tensile crack and the inclination of surface failure on the most critical condition, considering at the same time, surcharge, seismic effect and water pressure. Therefore, it studies the stability of rock slopes considering that the potential of failure surface it is constituted by two blocks with different inclinations. The superior block is limited by a tensile crack that is represented by a fracture without displacement. On the other hand, on the inferior block, geometry is formed by a potential slide plane of α inclination with the horizontal axis, in which are acting shear stresses. Fracture on superior block is characterized by a normal-tensile stresses field that act over the crack whose presence originates when the rock loses its original cohesion. Finally, comparisons are made through examples with the limit equilibrium method and finite elements method, where it determines the safety factor on dry state, water and seism, being all of them too similar. Besides, the methodology compares the track depth and the distance between the intersection point of tensile crack and the edge of the slope face, results shows that the analytic methodology is very conservative and throws the less values of this distances.</description><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Failure surface</subject><subject>Finite element method</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrostatic pressure</subject><subject>Inclination</subject><subject>Methodology</subject><subject>Original Paper</subject><subject>Pressure effects</subject><subject>Rocks</subject><subject>Safety</subject><subject>Safety factors</subject><subject>Seismic effects</subject><subject>Seismic stability</subject><subject>Shear stress</subject><subject>Slope stability</subject><subject>Stresses</subject><subject>Terrestrial Pollution</subject><subject>Waste Management/Waste Technology</subject><subject>Water pressure</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaM7cRJlqhqAamARNslslxnUtzm0dqJUP-eQJDYsZrNvedqDiHXHG45QHIXOCSgGAhgwJWIWHpCRjxOJOOxyE7JCDIFTPJUnJOLELYAIBTwEXlfmALbI50Z2zaeNjV9a-yOLspmj4F-uvaDLrEOrkQ68cbuAl0FV2_oS1ehd9aU1NQ5nbvKtXR66Fzp1t51FX1ucizDJTkrTBnw6veOyWo2XU4e2fz14WlyP2dGRqJlhUq4ghRQIfTvKMBoLWFtAfLMKm4wxSKWQiAqk-SYJBYKUJIbFeUqLoQck5uBu_fNocPQ6m3T-bqf1CLugRkHFfUpMaSsb0LwWOi9d5XxR81Bf2vUg0bda9Q_GnXal-RQCn243qD_Q__T-gKqeHR5</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Belandria, Norly</creator><creator>Úcar, Roberto</creator><creator>Corredor, Alfredo</creator><creator>Hassani, Ferri</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9485-0860</orcidid></search><sort><creationdate>20210301</creationdate><title>Safety Factor on Rock Slopes with Tensile Cracks Using Numerical and Limit Equilibrium Models</title><author>Belandria, Norly ; Úcar, Roberto ; Corredor, Alfredo ; Hassani, Ferri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-f6716080e6e010060e4b30bc00d9c61ae8ef5322ee6a7de77c0f0631a64d65f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Failure surface</topic><topic>Finite element method</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrostatic pressure</topic><topic>Inclination</topic><topic>Methodology</topic><topic>Original Paper</topic><topic>Pressure effects</topic><topic>Rocks</topic><topic>Safety</topic><topic>Safety factors</topic><topic>Seismic effects</topic><topic>Seismic stability</topic><topic>Shear stress</topic><topic>Slope stability</topic><topic>Stresses</topic><topic>Terrestrial Pollution</topic><topic>Waste Management/Waste Technology</topic><topic>Water pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belandria, Norly</creatorcontrib><creatorcontrib>Úcar, Roberto</creatorcontrib><creatorcontrib>Corredor, Alfredo</creatorcontrib><creatorcontrib>Hassani, Ferri</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belandria, Norly</au><au>Úcar, Roberto</au><au>Corredor, Alfredo</au><au>Hassani, Ferri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safety Factor on Rock Slopes with Tensile Cracks Using Numerical and Limit Equilibrium Models</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>39</volume><issue>3</issue><spage>2287</spage><epage>2300</epage><pages>2287-2300</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>Through the research it describes an analytic methodology, which allows to determine the minimum safety factor depending on the depth of tensile crack and the inclination of surface failure on the most critical condition, considering at the same time, surcharge, seismic effect and water pressure. Therefore, it studies the stability of rock slopes considering that the potential of failure surface it is constituted by two blocks with different inclinations. The superior block is limited by a tensile crack that is represented by a fracture without displacement. On the other hand, on the inferior block, geometry is formed by a potential slide plane of α inclination with the horizontal axis, in which are acting shear stresses. Fracture on superior block is characterized by a normal-tensile stresses field that act over the crack whose presence originates when the rock loses its original cohesion. Finally, comparisons are made through examples with the limit equilibrium method and finite elements method, where it determines the safety factor on dry state, water and seism, being all of them too similar. Besides, the methodology compares the track depth and the distance between the intersection point of tensile crack and the edge of the slope face, results shows that the analytic methodology is very conservative and throws the less values of this distances.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-020-01624-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9485-0860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2021-03, Vol.39 (3), p.2287-2300
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_2500691064
source Springer Nature - Complete Springer Journals
subjects Civil Engineering
Earth and Environmental Science
Earth Sciences
Failure surface
Finite element method
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrostatic pressure
Inclination
Methodology
Original Paper
Pressure effects
Rocks
Safety
Safety factors
Seismic effects
Seismic stability
Shear stress
Slope stability
Stresses
Terrestrial Pollution
Waste Management/Waste Technology
Water pressure
title Safety Factor on Rock Slopes with Tensile Cracks Using Numerical and Limit Equilibrium Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safety%20Factor%20on%20Rock%20Slopes%20with%20Tensile%20Cracks%20Using%20Numerical%20and%20Limit%20Equilibrium%20Models&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Belandria,%20Norly&rft.date=2021-03-01&rft.volume=39&rft.issue=3&rft.spage=2287&rft.epage=2300&rft.pages=2287-2300&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-020-01624-8&rft_dat=%3Cproquest_cross%3E2500691064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500691064&rft_id=info:pmid/&rfr_iscdi=true