QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)

Leaf rust ( Puccinia recondite f. sp. Tritici ) is the prevalent wheat ( Triticum aestivum ) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic resources and crop evolution 2021-04, Vol.68 (4), p.1359-1373
Hauptverfasser: Xu, Xinyu, Duan, Zhenying, Su, jihua, Li, Xing, Wu, Jizhong, Yao, Zhanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1373
container_issue 4
container_start_page 1359
container_title Genetic resources and crop evolution
container_volume 68
creator Xu, Xinyu
Duan, Zhenying
Su, jihua
Li, Xing
Wu, Jizhong
Yao, Zhanjun
description Leaf rust ( Puccinia recondite f. sp. Tritici ) is the prevalent wheat ( Triticum aestivum ) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F 2:3 lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely, QLr.hebau-1BL , QLr.hebau-2AS , QLr.hebau-2BS , QLr.hebau-2BL , QLr.hebau-4B and QLr.hebau-6AL . Both QLr.hebau-2BS and QLr.hebau-4B were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis, QLr.hebau-1BL and QLr.hebau-4B were identified as Lr46 and Lr12 , respectively. QLr.hebau-2BS is very close to the temperature-sensitive gene LrZH22 , but requires further detection . QLr.hebau-2AS , QLr.hebau-2BL and QLr.hebau-6AL constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS).
doi_str_mv 10.1007/s10722-020-01067-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500688445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500688445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</originalsourceid><addsrcrecordid>eNp9kL1uFDEURi1EJJbAC1BZooHC4fpn7JkSrQhEWgFhF4nO8th3kgkbz2B7QHS8Q6q8Hk-CYSPRpfItvnOu70fIMw4nHMC8yhyMEAwEMOCgDZMPyIo3RrKGQ_eQrKATDetarR6RxzlfAUBndLsiN-e7Db128zzGCzoN1IVlX9i8d7HQhHnMxUWPtEx0j26gacmF9i5joFOk2-2nyqavmDJ1MdDt-48047cFo7_TrS_HiBnpj0t0hVZrSK7qviy_f926kb7YpbGMfrmmDnMZv9dhc_LyCTka3D7j07v3mHw-fbNbv2ObD2_P1q83zEveFaYHzrXkQ-OMCsZLCVKh8IPpQwiN6XVnemiF6rn2ba-k6rSWQXnfehSdRHlMnh-8c5rqp3OxV9OSYl1pRQOg21appqbEIeXTlHPCwc5prFf_tBzs3_LtoXxby7f_yreyQvIA5RqOF5j-q--h_gAELohq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500688445</pqid></control><display><type>article</type><title>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</title><source>SpringerLink Journals</source><creator>Xu, Xinyu ; Duan, Zhenying ; Su, jihua ; Li, Xing ; Wu, Jizhong ; Yao, Zhanjun</creator><creatorcontrib>Xu, Xinyu ; Duan, Zhenying ; Su, jihua ; Li, Xing ; Wu, Jizhong ; Yao, Zhanjun</creatorcontrib><description>Leaf rust ( Puccinia recondite f. sp. Tritici ) is the prevalent wheat ( Triticum aestivum ) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F 2:3 lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely, QLr.hebau-1BL , QLr.hebau-2AS , QLr.hebau-2BS , QLr.hebau-2BL , QLr.hebau-4B and QLr.hebau-6AL . Both QLr.hebau-2BS and QLr.hebau-4B were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis, QLr.hebau-1BL and QLr.hebau-4B were identified as Lr46 and Lr12 , respectively. QLr.hebau-2BS is very close to the temperature-sensitive gene LrZH22 , but requires further detection . QLr.hebau-2AS , QLr.hebau-2BL and QLr.hebau-6AL constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS).</description><identifier>ISSN: 0925-9864</identifier><identifier>EISSN: 1573-5109</identifier><identifier>DOI: 10.1007/s10722-020-01067-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agriculture ; Biomedical and Life Sciences ; Control methods ; Crop production ; Disease resistance ; Fungicides ; Gene mapping ; Genes ; Germplasm ; Leaf rust ; Leaves ; Life Sciences ; Mapping ; Marker-assisted selection ; Markers ; Nucleotides ; Phenotypic variations ; Plant Genetics and Genomics ; Plant Physiology ; Plant resistance ; Plant Sciences ; Plant Systematics/Taxonomy/Biogeography ; Plants ; Polymorphism ; Quantitative trait loci ; Research Article ; Single-nucleotide polymorphism ; Temperature requirements ; Triticum aestivum ; Wheat</subject><ispartof>Genetic resources and crop evolution, 2021-04, Vol.68 (4), p.1359-1373</ispartof><rights>Springer Nature B.V. 2021</rights><rights>Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</citedby><cites>FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</cites><orcidid>0000-0001-6083-0637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10722-020-01067-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10722-020-01067-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Xinyu</creatorcontrib><creatorcontrib>Duan, Zhenying</creatorcontrib><creatorcontrib>Su, jihua</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Wu, Jizhong</creatorcontrib><creatorcontrib>Yao, Zhanjun</creatorcontrib><title>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</title><title>Genetic resources and crop evolution</title><addtitle>Genet Resour Crop Evol</addtitle><description>Leaf rust ( Puccinia recondite f. sp. Tritici ) is the prevalent wheat ( Triticum aestivum ) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F 2:3 lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely, QLr.hebau-1BL , QLr.hebau-2AS , QLr.hebau-2BS , QLr.hebau-2BL , QLr.hebau-4B and QLr.hebau-6AL . Both QLr.hebau-2BS and QLr.hebau-4B were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis, QLr.hebau-1BL and QLr.hebau-4B were identified as Lr46 and Lr12 , respectively. QLr.hebau-2BS is very close to the temperature-sensitive gene LrZH22 , but requires further detection . QLr.hebau-2AS , QLr.hebau-2BL and QLr.hebau-6AL constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS).</description><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Control methods</subject><subject>Crop production</subject><subject>Disease resistance</subject><subject>Fungicides</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Germplasm</subject><subject>Leaf rust</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>Marker-assisted selection</subject><subject>Markers</subject><subject>Nucleotides</subject><subject>Phenotypic variations</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Plants</subject><subject>Polymorphism</subject><subject>Quantitative trait loci</subject><subject>Research Article</subject><subject>Single-nucleotide polymorphism</subject><subject>Temperature requirements</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0925-9864</issn><issn>1573-5109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kL1uFDEURi1EJJbAC1BZooHC4fpn7JkSrQhEWgFhF4nO8th3kgkbz2B7QHS8Q6q8Hk-CYSPRpfItvnOu70fIMw4nHMC8yhyMEAwEMOCgDZMPyIo3RrKGQ_eQrKATDetarR6RxzlfAUBndLsiN-e7Db128zzGCzoN1IVlX9i8d7HQhHnMxUWPtEx0j26gacmF9i5joFOk2-2nyqavmDJ1MdDt-48047cFo7_TrS_HiBnpj0t0hVZrSK7qviy_f926kb7YpbGMfrmmDnMZv9dhc_LyCTka3D7j07v3mHw-fbNbv2ObD2_P1q83zEveFaYHzrXkQ-OMCsZLCVKh8IPpQwiN6XVnemiF6rn2ba-k6rSWQXnfehSdRHlMnh-8c5rqp3OxV9OSYl1pRQOg21appqbEIeXTlHPCwc5prFf_tBzs3_LtoXxby7f_yreyQvIA5RqOF5j-q--h_gAELohq</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xu, Xinyu</creator><creator>Duan, Zhenying</creator><creator>Su, jihua</creator><creator>Li, Xing</creator><creator>Wu, Jizhong</creator><creator>Yao, Zhanjun</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6083-0637</orcidid></search><sort><creationdate>20210401</creationdate><title>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</title><author>Xu, Xinyu ; Duan, Zhenying ; Su, jihua ; Li, Xing ; Wu, Jizhong ; Yao, Zhanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Control methods</topic><topic>Crop production</topic><topic>Disease resistance</topic><topic>Fungicides</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Germplasm</topic><topic>Leaf rust</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>Marker-assisted selection</topic><topic>Markers</topic><topic>Nucleotides</topic><topic>Phenotypic variations</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Plants</topic><topic>Polymorphism</topic><topic>Quantitative trait loci</topic><topic>Research Article</topic><topic>Single-nucleotide polymorphism</topic><topic>Temperature requirements</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xinyu</creatorcontrib><creatorcontrib>Duan, Zhenying</creatorcontrib><creatorcontrib>Su, jihua</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Wu, Jizhong</creatorcontrib><creatorcontrib>Yao, Zhanjun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Genetic resources and crop evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xinyu</au><au>Duan, Zhenying</au><au>Su, jihua</au><au>Li, Xing</au><au>Wu, Jizhong</au><au>Yao, Zhanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</atitle><jtitle>Genetic resources and crop evolution</jtitle><stitle>Genet Resour Crop Evol</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>68</volume><issue>4</issue><spage>1359</spage><epage>1373</epage><pages>1359-1373</pages><issn>0925-9864</issn><eissn>1573-5109</eissn><abstract>Leaf rust ( Puccinia recondite f. sp. Tritici ) is the prevalent wheat ( Triticum aestivum ) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F 2:3 lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely, QLr.hebau-1BL , QLr.hebau-2AS , QLr.hebau-2BS , QLr.hebau-2BL , QLr.hebau-4B and QLr.hebau-6AL . Both QLr.hebau-2BS and QLr.hebau-4B were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis, QLr.hebau-1BL and QLr.hebau-4B were identified as Lr46 and Lr12 , respectively. QLr.hebau-2BS is very close to the temperature-sensitive gene LrZH22 , but requires further detection . QLr.hebau-2AS , QLr.hebau-2BL and QLr.hebau-6AL constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10722-020-01067-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6083-0637</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-9864
ispartof Genetic resources and crop evolution, 2021-04, Vol.68 (4), p.1359-1373
issn 0925-9864
1573-5109
language eng
recordid cdi_proquest_journals_2500688445
source SpringerLink Journals
subjects Agriculture
Biomedical and Life Sciences
Control methods
Crop production
Disease resistance
Fungicides
Gene mapping
Genes
Germplasm
Leaf rust
Leaves
Life Sciences
Mapping
Marker-assisted selection
Markers
Nucleotides
Phenotypic variations
Plant Genetics and Genomics
Plant Physiology
Plant resistance
Plant Sciences
Plant Systematics/Taxonomy/Biogeography
Plants
Polymorphism
Quantitative trait loci
Research Article
Single-nucleotide polymorphism
Temperature requirements
Triticum aestivum
Wheat
title QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QTL%20mapping%20of%20adult-plant%20resistance%20to%20leaf%20rust%20based%20on%20SSR%20markers%20and%20SNP%20sequencing%20of%20Chinese%20wheat%20landrace%20Xu%E2%80%99ai%20(Triticum%20aestivum%20L.)&rft.jtitle=Genetic%20resources%20and%20crop%20evolution&rft.au=Xu,%20Xinyu&rft.date=2021-04-01&rft.volume=68&rft.issue=4&rft.spage=1359&rft.epage=1373&rft.pages=1359-1373&rft.issn=0925-9864&rft.eissn=1573-5109&rft_id=info:doi/10.1007/s10722-020-01067-3&rft_dat=%3Cproquest_cross%3E2500688445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500688445&rft_id=info:pmid/&rfr_iscdi=true