QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)
Leaf rust ( Puccinia recondite f. sp. Tritici ) is the prevalent wheat ( Triticum aestivum ) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than ap...
Gespeichert in:
Veröffentlicht in: | Genetic resources and crop evolution 2021-04, Vol.68 (4), p.1359-1373 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1373 |
---|---|
container_issue | 4 |
container_start_page | 1359 |
container_title | Genetic resources and crop evolution |
container_volume | 68 |
creator | Xu, Xinyu Duan, Zhenying Su, jihua Li, Xing Wu, Jizhong Yao, Zhanjun |
description | Leaf rust (
Puccinia recondite
f. sp.
Tritici
) is the prevalent wheat (
Triticum aestivum
) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F
2:3
lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely,
QLr.hebau-1BL
,
QLr.hebau-2AS
,
QLr.hebau-2BS
,
QLr.hebau-2BL
,
QLr.hebau-4B
and
QLr.hebau-6AL
. Both
QLr.hebau-2BS
and
QLr.hebau-4B
were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis,
QLr.hebau-1BL
and
QLr.hebau-4B
were identified as
Lr46
and
Lr12
, respectively.
QLr.hebau-2BS
is very close to the temperature-sensitive gene
LrZH22
, but requires further detection
. QLr.hebau-2AS
,
QLr.hebau-2BL
and
QLr.hebau-6AL
constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS). |
doi_str_mv | 10.1007/s10722-020-01067-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500688445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500688445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</originalsourceid><addsrcrecordid>eNp9kL1uFDEURi1EJJbAC1BZooHC4fpn7JkSrQhEWgFhF4nO8th3kgkbz2B7QHS8Q6q8Hk-CYSPRpfItvnOu70fIMw4nHMC8yhyMEAwEMOCgDZMPyIo3RrKGQ_eQrKATDetarR6RxzlfAUBndLsiN-e7Db128zzGCzoN1IVlX9i8d7HQhHnMxUWPtEx0j26gacmF9i5joFOk2-2nyqavmDJ1MdDt-48047cFo7_TrS_HiBnpj0t0hVZrSK7qviy_f926kb7YpbGMfrmmDnMZv9dhc_LyCTka3D7j07v3mHw-fbNbv2ObD2_P1q83zEveFaYHzrXkQ-OMCsZLCVKh8IPpQwiN6XVnemiF6rn2ba-k6rSWQXnfehSdRHlMnh-8c5rqp3OxV9OSYl1pRQOg21appqbEIeXTlHPCwc5prFf_tBzs3_LtoXxby7f_yreyQvIA5RqOF5j-q--h_gAELohq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500688445</pqid></control><display><type>article</type><title>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</title><source>SpringerLink Journals</source><creator>Xu, Xinyu ; Duan, Zhenying ; Su, jihua ; Li, Xing ; Wu, Jizhong ; Yao, Zhanjun</creator><creatorcontrib>Xu, Xinyu ; Duan, Zhenying ; Su, jihua ; Li, Xing ; Wu, Jizhong ; Yao, Zhanjun</creatorcontrib><description>Leaf rust (
Puccinia recondite
f. sp.
Tritici
) is the prevalent wheat (
Triticum aestivum
) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F
2:3
lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely,
QLr.hebau-1BL
,
QLr.hebau-2AS
,
QLr.hebau-2BS
,
QLr.hebau-2BL
,
QLr.hebau-4B
and
QLr.hebau-6AL
. Both
QLr.hebau-2BS
and
QLr.hebau-4B
were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis,
QLr.hebau-1BL
and
QLr.hebau-4B
were identified as
Lr46
and
Lr12
, respectively.
QLr.hebau-2BS
is very close to the temperature-sensitive gene
LrZH22
, but requires further detection
. QLr.hebau-2AS
,
QLr.hebau-2BL
and
QLr.hebau-6AL
constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS).</description><identifier>ISSN: 0925-9864</identifier><identifier>EISSN: 1573-5109</identifier><identifier>DOI: 10.1007/s10722-020-01067-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agriculture ; Biomedical and Life Sciences ; Control methods ; Crop production ; Disease resistance ; Fungicides ; Gene mapping ; Genes ; Germplasm ; Leaf rust ; Leaves ; Life Sciences ; Mapping ; Marker-assisted selection ; Markers ; Nucleotides ; Phenotypic variations ; Plant Genetics and Genomics ; Plant Physiology ; Plant resistance ; Plant Sciences ; Plant Systematics/Taxonomy/Biogeography ; Plants ; Polymorphism ; Quantitative trait loci ; Research Article ; Single-nucleotide polymorphism ; Temperature requirements ; Triticum aestivum ; Wheat</subject><ispartof>Genetic resources and crop evolution, 2021-04, Vol.68 (4), p.1359-1373</ispartof><rights>Springer Nature B.V. 2021</rights><rights>Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</citedby><cites>FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</cites><orcidid>0000-0001-6083-0637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10722-020-01067-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10722-020-01067-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Xinyu</creatorcontrib><creatorcontrib>Duan, Zhenying</creatorcontrib><creatorcontrib>Su, jihua</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Wu, Jizhong</creatorcontrib><creatorcontrib>Yao, Zhanjun</creatorcontrib><title>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</title><title>Genetic resources and crop evolution</title><addtitle>Genet Resour Crop Evol</addtitle><description>Leaf rust (
Puccinia recondite
f. sp.
Tritici
) is the prevalent wheat (
Triticum aestivum
) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F
2:3
lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely,
QLr.hebau-1BL
,
QLr.hebau-2AS
,
QLr.hebau-2BS
,
QLr.hebau-2BL
,
QLr.hebau-4B
and
QLr.hebau-6AL
. Both
QLr.hebau-2BS
and
QLr.hebau-4B
were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis,
QLr.hebau-1BL
and
QLr.hebau-4B
were identified as
Lr46
and
Lr12
, respectively.
QLr.hebau-2BS
is very close to the temperature-sensitive gene
LrZH22
, but requires further detection
. QLr.hebau-2AS
,
QLr.hebau-2BL
and
QLr.hebau-6AL
constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS).</description><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Control methods</subject><subject>Crop production</subject><subject>Disease resistance</subject><subject>Fungicides</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Germplasm</subject><subject>Leaf rust</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>Marker-assisted selection</subject><subject>Markers</subject><subject>Nucleotides</subject><subject>Phenotypic variations</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Plants</subject><subject>Polymorphism</subject><subject>Quantitative trait loci</subject><subject>Research Article</subject><subject>Single-nucleotide polymorphism</subject><subject>Temperature requirements</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0925-9864</issn><issn>1573-5109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kL1uFDEURi1EJJbAC1BZooHC4fpn7JkSrQhEWgFhF4nO8th3kgkbz2B7QHS8Q6q8Hk-CYSPRpfItvnOu70fIMw4nHMC8yhyMEAwEMOCgDZMPyIo3RrKGQ_eQrKATDetarR6RxzlfAUBndLsiN-e7Db128zzGCzoN1IVlX9i8d7HQhHnMxUWPtEx0j26gacmF9i5joFOk2-2nyqavmDJ1MdDt-48047cFo7_TrS_HiBnpj0t0hVZrSK7qviy_f926kb7YpbGMfrmmDnMZv9dhc_LyCTka3D7j07v3mHw-fbNbv2ObD2_P1q83zEveFaYHzrXkQ-OMCsZLCVKh8IPpQwiN6XVnemiF6rn2ba-k6rSWQXnfehSdRHlMnh-8c5rqp3OxV9OSYl1pRQOg21appqbEIeXTlHPCwc5prFf_tBzs3_LtoXxby7f_yreyQvIA5RqOF5j-q--h_gAELohq</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xu, Xinyu</creator><creator>Duan, Zhenying</creator><creator>Su, jihua</creator><creator>Li, Xing</creator><creator>Wu, Jizhong</creator><creator>Yao, Zhanjun</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6083-0637</orcidid></search><sort><creationdate>20210401</creationdate><title>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</title><author>Xu, Xinyu ; Duan, Zhenying ; Su, jihua ; Li, Xing ; Wu, Jizhong ; Yao, Zhanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6f11631f5a74d7c33034e2cf7bddd57b697b0824b16c8b4349663d4cc8ce293e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Control methods</topic><topic>Crop production</topic><topic>Disease resistance</topic><topic>Fungicides</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Germplasm</topic><topic>Leaf rust</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>Marker-assisted selection</topic><topic>Markers</topic><topic>Nucleotides</topic><topic>Phenotypic variations</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Plants</topic><topic>Polymorphism</topic><topic>Quantitative trait loci</topic><topic>Research Article</topic><topic>Single-nucleotide polymorphism</topic><topic>Temperature requirements</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xinyu</creatorcontrib><creatorcontrib>Duan, Zhenying</creatorcontrib><creatorcontrib>Su, jihua</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Wu, Jizhong</creatorcontrib><creatorcontrib>Yao, Zhanjun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Genetic resources and crop evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xinyu</au><au>Duan, Zhenying</au><au>Su, jihua</au><au>Li, Xing</au><au>Wu, Jizhong</au><au>Yao, Zhanjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)</atitle><jtitle>Genetic resources and crop evolution</jtitle><stitle>Genet Resour Crop Evol</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>68</volume><issue>4</issue><spage>1359</spage><epage>1373</epage><pages>1359-1373</pages><issn>0925-9864</issn><eissn>1573-5109</eissn><abstract>Leaf rust (
Puccinia recondite
f. sp.
Tritici
) is the prevalent wheat (
Triticum aestivum
) disease in many areas of the world. The preferred method of control is to introduce resistance genes against this disease into elite wheat germplasm, an approach that is more environmentally friendly than applying fungicides and that has underpinned sustained wheat production to date. Identifying new adult-plant resistance (APR) genes and quantitative trait loci (QTL) for leaf rust resistance can expand the sources of disease resistance and contribute to breeding for durable resistance, allowing the pyramiding of multiple APR genes in elite wheat lines. In this study, simple sequence repeat (SSR) markers, together with the bulked segregant and single nucleotide polymorphism analyses (BSA and SNP), were used to identify QTL in F
2:3
lines derived from Xu’ai and Zhengzhou 5389. Yield data for the population lines were used to detect QTL by inclusive composite interval mapping analysis. Six QTL were identified, namely,
QLr.hebau-1BL
,
QLr.hebau-2AS
,
QLr.hebau-2BS
,
QLr.hebau-2BL
,
QLr.hebau-4B
and
QLr.hebau-6AL
. Both
QLr.hebau-2BS
and
QLr.hebau-4B
were detected in five environments, explaining 23.1–37.5% and 7.6–18.3% of the phenotypic variation for resistance, respectively. After analysis,
QLr.hebau-1BL
and
QLr.hebau-4B
were identified as
Lr46
and
Lr12
, respectively.
QLr.hebau-2BS
is very close to the temperature-sensitive gene
LrZH22
, but requires further detection
. QLr.hebau-2AS
,
QLr.hebau-2BL
and
QLr.hebau-6AL
constitute new resistance loci. These genes or QTL for reduced disease severity were derived from the resistant parent Xu’ai. The QTL identified and their flanking markers could be useful for fine mapping and marker-assisted selection (MAS).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10722-020-01067-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6083-0637</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9864 |
ispartof | Genetic resources and crop evolution, 2021-04, Vol.68 (4), p.1359-1373 |
issn | 0925-9864 1573-5109 |
language | eng |
recordid | cdi_proquest_journals_2500688445 |
source | SpringerLink Journals |
subjects | Agriculture Biomedical and Life Sciences Control methods Crop production Disease resistance Fungicides Gene mapping Genes Germplasm Leaf rust Leaves Life Sciences Mapping Marker-assisted selection Markers Nucleotides Phenotypic variations Plant Genetics and Genomics Plant Physiology Plant resistance Plant Sciences Plant Systematics/Taxonomy/Biogeography Plants Polymorphism Quantitative trait loci Research Article Single-nucleotide polymorphism Temperature requirements Triticum aestivum Wheat |
title | QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QTL%20mapping%20of%20adult-plant%20resistance%20to%20leaf%20rust%20based%20on%20SSR%20markers%20and%20SNP%20sequencing%20of%20Chinese%20wheat%20landrace%20Xu%E2%80%99ai%20(Triticum%20aestivum%20L.)&rft.jtitle=Genetic%20resources%20and%20crop%20evolution&rft.au=Xu,%20Xinyu&rft.date=2021-04-01&rft.volume=68&rft.issue=4&rft.spage=1359&rft.epage=1373&rft.pages=1359-1373&rft.issn=0925-9864&rft.eissn=1573-5109&rft_id=info:doi/10.1007/s10722-020-01067-3&rft_dat=%3Cproquest_cross%3E2500688445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500688445&rft_id=info:pmid/&rfr_iscdi=true |