Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation

The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface engineering and applied electrochemistry 2021, Vol.57 (1), p.106-116
Hauptverfasser: Toshihiko Yoshimura, Shimonishi, Daichi, Hashimoto, Daiki, Nishijima, Nobuaki, Ijiri, Masataka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 1
container_start_page 106
container_title Surface engineering and applied electrochemistry
container_volume 57
creator Toshihiko Yoshimura
Shimonishi, Daichi
Hashimoto, Daiki
Nishijima, Nobuaki
Ijiri, Masataka
description The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.
doi_str_mv 10.3103/S1068375521010154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500466693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500466693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq0kmSXeP0tYH1geo5yVNJ2VLu6lJVrC_3iwVPIjMYWb4HjN8hJxzdgmcwdUrZ7qEkVKCs1xKHpABr0AWJWPiMM8ZLnr8mJzEuGJMaaHEgDxMnUObqHf0JXiLMTbtkk5wGRCpaRf0ye92a6STxmwwYaC-pY_dOjWua21q8jY2n00y_XhKjpxZRzz76UPyfjN9G98Vs-fb-_H1rLBQilQYBVCBLpXWVgiJmo9UBabKvxtmTOVAyBLm1hkxkhaVVhbnC8mBKSfmTMGQXOx9t8F_dBhTvfJdaPPJWijGpNa6gszie5YNPsaArt6GZmPCV81Z3WdW_8ksa8ReEzO3XWL4df5f9A0Mf2wR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500466693</pqid></control><display><type>article</type><title>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Toshihiko Yoshimura ; Shimonishi, Daichi ; Hashimoto, Daiki ; Nishijima, Nobuaki ; Ijiri, Masataka</creator><creatorcontrib>Toshihiko Yoshimura ; Shimonishi, Daichi ; Hashimoto, Daiki ; Nishijima, Nobuaki ; Ijiri, Masataka</creatorcontrib><description>The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.</description><identifier>ISSN: 1068-3755</identifier><identifier>EISSN: 1934-8002</identifier><identifier>DOI: 10.3103/S1068375521010154</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bubbles ; Cavitation ; Engineering ; Hydraulic jets ; Jet nozzles ; Luminous intensity ; Machines ; Manufacturing ; Microjets ; Nozzles ; Photocatalysis ; Processes ; Sonoluminescence ; Titanium oxide powders ; Titanium oxides</subject><ispartof>Surface engineering and applied electrochemistry, 2021, Vol.57 (1), p.106-116</ispartof><rights>Allerton Press, Inc. 2021. ISSN 1068-3755, Surface Engineering and Applied Electrochemistry, 2021, Vol. 57, No. 1, pp. 106–116. © Allerton Press, Inc., 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</citedby><cites>FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068375521010154$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068375521010154$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Toshihiko Yoshimura</creatorcontrib><creatorcontrib>Shimonishi, Daichi</creatorcontrib><creatorcontrib>Hashimoto, Daiki</creatorcontrib><creatorcontrib>Nishijima, Nobuaki</creatorcontrib><creatorcontrib>Ijiri, Masataka</creatorcontrib><title>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</title><title>Surface engineering and applied electrochemistry</title><addtitle>Surf. Engin. Appl.Electrochem</addtitle><description>The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.</description><subject>Bubbles</subject><subject>Cavitation</subject><subject>Engineering</subject><subject>Hydraulic jets</subject><subject>Jet nozzles</subject><subject>Luminous intensity</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Microjets</subject><subject>Nozzles</subject><subject>Photocatalysis</subject><subject>Processes</subject><subject>Sonoluminescence</subject><subject>Titanium oxide powders</subject><subject>Titanium oxides</subject><issn>1068-3755</issn><issn>1934-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq0kmSXeP0tYH1geo5yVNJ2VLu6lJVrC_3iwVPIjMYWb4HjN8hJxzdgmcwdUrZ7qEkVKCs1xKHpABr0AWJWPiMM8ZLnr8mJzEuGJMaaHEgDxMnUObqHf0JXiLMTbtkk5wGRCpaRf0ye92a6STxmwwYaC-pY_dOjWua21q8jY2n00y_XhKjpxZRzz76UPyfjN9G98Vs-fb-_H1rLBQilQYBVCBLpXWVgiJmo9UBabKvxtmTOVAyBLm1hkxkhaVVhbnC8mBKSfmTMGQXOx9t8F_dBhTvfJdaPPJWijGpNa6gszie5YNPsaArt6GZmPCV81Z3WdW_8ksa8ReEzO3XWL4df5f9A0Mf2wR</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Toshihiko Yoshimura</creator><creator>Shimonishi, Daichi</creator><creator>Hashimoto, Daiki</creator><creator>Nishijima, Nobuaki</creator><creator>Ijiri, Masataka</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</title><author>Toshihiko Yoshimura ; Shimonishi, Daichi ; Hashimoto, Daiki ; Nishijima, Nobuaki ; Ijiri, Masataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bubbles</topic><topic>Cavitation</topic><topic>Engineering</topic><topic>Hydraulic jets</topic><topic>Jet nozzles</topic><topic>Luminous intensity</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Microjets</topic><topic>Nozzles</topic><topic>Photocatalysis</topic><topic>Processes</topic><topic>Sonoluminescence</topic><topic>Titanium oxide powders</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toshihiko Yoshimura</creatorcontrib><creatorcontrib>Shimonishi, Daichi</creatorcontrib><creatorcontrib>Hashimoto, Daiki</creatorcontrib><creatorcontrib>Nishijima, Nobuaki</creatorcontrib><creatorcontrib>Ijiri, Masataka</creatorcontrib><collection>CrossRef</collection><jtitle>Surface engineering and applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toshihiko Yoshimura</au><au>Shimonishi, Daichi</au><au>Hashimoto, Daiki</au><au>Nishijima, Nobuaki</au><au>Ijiri, Masataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</atitle><jtitle>Surface engineering and applied electrochemistry</jtitle><stitle>Surf. Engin. Appl.Electrochem</stitle><date>2021</date><risdate>2021</risdate><volume>57</volume><issue>1</issue><spage>106</spage><epage>116</epage><pages>106-116</pages><issn>1068-3755</issn><eissn>1934-8002</eissn><abstract>The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068375521010154</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3755
ispartof Surface engineering and applied electrochemistry, 2021, Vol.57 (1), p.106-116
issn 1068-3755
1934-8002
language eng
recordid cdi_proquest_journals_2500466693
source SpringerLink Journals - AutoHoldings
subjects Bubbles
Cavitation
Engineering
Hydraulic jets
Jet nozzles
Luminous intensity
Machines
Manufacturing
Microjets
Nozzles
Photocatalysis
Processes
Sonoluminescence
Titanium oxide powders
Titanium oxides
title Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Processing%20Degree%20and%20Nozzle%20Diameter%20on%20Multifunction%20Cavitation&rft.jtitle=Surface%20engineering%20and%20applied%20electrochemistry&rft.au=Toshihiko%20Yoshimura&rft.date=2021&rft.volume=57&rft.issue=1&rft.spage=106&rft.epage=116&rft.pages=106-116&rft.issn=1068-3755&rft.eissn=1934-8002&rft_id=info:doi/10.3103/S1068375521010154&rft_dat=%3Cproquest_cross%3E2500466693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500466693&rft_id=info:pmid/&rfr_iscdi=true