Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation
The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide...
Gespeichert in:
Veröffentlicht in: | Surface engineering and applied electrochemistry 2021, Vol.57 (1), p.106-116 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | 1 |
container_start_page | 106 |
container_title | Surface engineering and applied electrochemistry |
container_volume | 57 |
creator | Toshihiko Yoshimura Shimonishi, Daichi Hashimoto, Daiki Nishijima, Nobuaki Ijiri, Masataka |
description | The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties. |
doi_str_mv | 10.3103/S1068375521010154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2500466693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2500466693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq0kmSXeP0tYH1geo5yVNJ2VLu6lJVrC_3iwVPIjMYWb4HjN8hJxzdgmcwdUrZ7qEkVKCs1xKHpABr0AWJWPiMM8ZLnr8mJzEuGJMaaHEgDxMnUObqHf0JXiLMTbtkk5wGRCpaRf0ye92a6STxmwwYaC-pY_dOjWua21q8jY2n00y_XhKjpxZRzz76UPyfjN9G98Vs-fb-_H1rLBQilQYBVCBLpXWVgiJmo9UBabKvxtmTOVAyBLm1hkxkhaVVhbnC8mBKSfmTMGQXOx9t8F_dBhTvfJdaPPJWijGpNa6gszie5YNPsaArt6GZmPCV81Z3WdW_8ksa8ReEzO3XWL4df5f9A0Mf2wR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500466693</pqid></control><display><type>article</type><title>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Toshihiko Yoshimura ; Shimonishi, Daichi ; Hashimoto, Daiki ; Nishijima, Nobuaki ; Ijiri, Masataka</creator><creatorcontrib>Toshihiko Yoshimura ; Shimonishi, Daichi ; Hashimoto, Daiki ; Nishijima, Nobuaki ; Ijiri, Masataka</creatorcontrib><description>The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.</description><identifier>ISSN: 1068-3755</identifier><identifier>EISSN: 1934-8002</identifier><identifier>DOI: 10.3103/S1068375521010154</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bubbles ; Cavitation ; Engineering ; Hydraulic jets ; Jet nozzles ; Luminous intensity ; Machines ; Manufacturing ; Microjets ; Nozzles ; Photocatalysis ; Processes ; Sonoluminescence ; Titanium oxide powders ; Titanium oxides</subject><ispartof>Surface engineering and applied electrochemistry, 2021, Vol.57 (1), p.106-116</ispartof><rights>Allerton Press, Inc. 2021. ISSN 1068-3755, Surface Engineering and Applied Electrochemistry, 2021, Vol. 57, No. 1, pp. 106–116. © Allerton Press, Inc., 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</citedby><cites>FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068375521010154$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068375521010154$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Toshihiko Yoshimura</creatorcontrib><creatorcontrib>Shimonishi, Daichi</creatorcontrib><creatorcontrib>Hashimoto, Daiki</creatorcontrib><creatorcontrib>Nishijima, Nobuaki</creatorcontrib><creatorcontrib>Ijiri, Masataka</creatorcontrib><title>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</title><title>Surface engineering and applied electrochemistry</title><addtitle>Surf. Engin. Appl.Electrochem</addtitle><description>The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.</description><subject>Bubbles</subject><subject>Cavitation</subject><subject>Engineering</subject><subject>Hydraulic jets</subject><subject>Jet nozzles</subject><subject>Luminous intensity</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Microjets</subject><subject>Nozzles</subject><subject>Photocatalysis</subject><subject>Processes</subject><subject>Sonoluminescence</subject><subject>Titanium oxide powders</subject><subject>Titanium oxides</subject><issn>1068-3755</issn><issn>1934-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq0kmSXeP0tYH1geo5yVNJ2VLu6lJVrC_3iwVPIjMYWb4HjN8hJxzdgmcwdUrZ7qEkVKCs1xKHpABr0AWJWPiMM8ZLnr8mJzEuGJMaaHEgDxMnUObqHf0JXiLMTbtkk5wGRCpaRf0ye92a6STxmwwYaC-pY_dOjWua21q8jY2n00y_XhKjpxZRzz76UPyfjN9G98Vs-fb-_H1rLBQilQYBVCBLpXWVgiJmo9UBabKvxtmTOVAyBLm1hkxkhaVVhbnC8mBKSfmTMGQXOx9t8F_dBhTvfJdaPPJWijGpNa6gszie5YNPsaArt6GZmPCV81Z3WdW_8ksa8ReEzO3XWL4df5f9A0Mf2wR</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Toshihiko Yoshimura</creator><creator>Shimonishi, Daichi</creator><creator>Hashimoto, Daiki</creator><creator>Nishijima, Nobuaki</creator><creator>Ijiri, Masataka</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</title><author>Toshihiko Yoshimura ; Shimonishi, Daichi ; Hashimoto, Daiki ; Nishijima, Nobuaki ; Ijiri, Masataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a5339368566c224e617593a9552a0aa9f32483bcfa274ce565cebd41305f2b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bubbles</topic><topic>Cavitation</topic><topic>Engineering</topic><topic>Hydraulic jets</topic><topic>Jet nozzles</topic><topic>Luminous intensity</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Microjets</topic><topic>Nozzles</topic><topic>Photocatalysis</topic><topic>Processes</topic><topic>Sonoluminescence</topic><topic>Titanium oxide powders</topic><topic>Titanium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toshihiko Yoshimura</creatorcontrib><creatorcontrib>Shimonishi, Daichi</creatorcontrib><creatorcontrib>Hashimoto, Daiki</creatorcontrib><creatorcontrib>Nishijima, Nobuaki</creatorcontrib><creatorcontrib>Ijiri, Masataka</creatorcontrib><collection>CrossRef</collection><jtitle>Surface engineering and applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toshihiko Yoshimura</au><au>Shimonishi, Daichi</au><au>Hashimoto, Daiki</au><au>Nishijima, Nobuaki</au><au>Ijiri, Masataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation</atitle><jtitle>Surface engineering and applied electrochemistry</jtitle><stitle>Surf. Engin. Appl.Electrochem</stitle><date>2021</date><risdate>2021</risdate><volume>57</volume><issue>1</issue><spage>106</spage><epage>116</epage><pages>106-116</pages><issn>1068-3755</issn><eissn>1934-8002</eissn><abstract>The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068375521010154</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-3755 |
ispartof | Surface engineering and applied electrochemistry, 2021, Vol.57 (1), p.106-116 |
issn | 1068-3755 1934-8002 |
language | eng |
recordid | cdi_proquest_journals_2500466693 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bubbles Cavitation Engineering Hydraulic jets Jet nozzles Luminous intensity Machines Manufacturing Microjets Nozzles Photocatalysis Processes Sonoluminescence Titanium oxide powders Titanium oxides |
title | Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Processing%20Degree%20and%20Nozzle%20Diameter%20on%20Multifunction%20Cavitation&rft.jtitle=Surface%20engineering%20and%20applied%20electrochemistry&rft.au=Toshihiko%20Yoshimura&rft.date=2021&rft.volume=57&rft.issue=1&rft.spage=106&rft.epage=116&rft.pages=106-116&rft.issn=1068-3755&rft.eissn=1934-8002&rft_id=info:doi/10.3103/S1068375521010154&rft_dat=%3Cproquest_cross%3E2500466693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500466693&rft_id=info:pmid/&rfr_iscdi=true |