Some mixed graphs with H-rank 4, 6 or 8

The H -rank of a mixed graph G α is defined to be the rank of its Hermitian adjacency matrix H ( G α ) . If G α is switching equivalent to a mixed graph ( G α ) ′ , and two vertices u ,  v of G α have exactly the same neighborhood in ( G α ) ′ , then u and v are said to be twins. The twin reduction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2021-04, Vol.41 (3), p.678-693
Hauptverfasser: Yang, Jinling, Wang, Ligong, Yang, Xiuwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 3
container_start_page 678
container_title Journal of combinatorial optimization
container_volume 41
creator Yang, Jinling
Wang, Ligong
Yang, Xiuwen
description The H -rank of a mixed graph G α is defined to be the rank of its Hermitian adjacency matrix H ( G α ) . If G α is switching equivalent to a mixed graph ( G α ) ′ , and two vertices u ,  v of G α have exactly the same neighborhood in ( G α ) ′ , then u and v are said to be twins. The twin reduction graph T G α of G α is a mixed graph whose vertices are the equivalence classes, and [ u ] [ v ] ∈ E ( T G α ) if u v ∈ E ( ( G α ) ′ ) , where [ u ] denotes the equivalence class containing the vertex u . In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with H -rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with H -rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9).
doi_str_mv 10.1007/s10878-021-00704-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499986634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499986634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaW2LDAMI7_xktUAUWqxAJYW27itCmkKXYq4DachZNhCBI7VvNm9N7M6CPkmMM5BzAXiQMaZFBwlluQTO-QEVdGsAJR72YtsGDagtonBymtACBrOSKn910baNu8hYouot8sE31t-iWdsujXT1SefX5o2kWKh2Sv9s8pHP3WMXm8vnqYTNns7uZ2cjljpeC2Z1XtDaLhsrJcgdbIDZjao62MzON5EGEugzKABVYopCgr5W1-TPKgvFJiTE6GvZvYvWxD6t2q28Z1PukKaa1FrXNqTIrBVcYupRhqt4lN6-O74-C-ibiBiMtE3A8Rp3NIDKGUzetFiH-r_0l9ATp6X-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499986634</pqid></control><display><type>article</type><title>Some mixed graphs with H-rank 4, 6 or 8</title><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Jinling ; Wang, Ligong ; Yang, Xiuwen</creator><creatorcontrib>Yang, Jinling ; Wang, Ligong ; Yang, Xiuwen</creatorcontrib><description>The H -rank of a mixed graph G α is defined to be the rank of its Hermitian adjacency matrix H ( G α ) . If G α is switching equivalent to a mixed graph ( G α ) ′ , and two vertices u ,  v of G α have exactly the same neighborhood in ( G α ) ′ , then u and v are said to be twins. The twin reduction graph T G α of G α is a mixed graph whose vertices are the equivalence classes, and [ u ] [ v ] ∈ E ( T G α ) if u v ∈ E ( ( G α ) ′ ) , where [ u ] denotes the equivalence class containing the vertex u . In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with H -rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with H -rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9).</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00704-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Combinatorics ; Convex and Discrete Geometry ; Equivalence ; Graph theory ; Graphs ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Reduction ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2021-04, Vol.41 (3), p.678-693</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</citedby><cites>FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</cites><orcidid>0000-0002-6160-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00704-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00704-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Jinling</creatorcontrib><creatorcontrib>Wang, Ligong</creatorcontrib><creatorcontrib>Yang, Xiuwen</creatorcontrib><title>Some mixed graphs with H-rank 4, 6 or 8</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>The H -rank of a mixed graph G α is defined to be the rank of its Hermitian adjacency matrix H ( G α ) . If G α is switching equivalent to a mixed graph ( G α ) ′ , and two vertices u ,  v of G α have exactly the same neighborhood in ( G α ) ′ , then u and v are said to be twins. The twin reduction graph T G α of G α is a mixed graph whose vertices are the equivalence classes, and [ u ] [ v ] ∈ E ( T G α ) if u v ∈ E ( ( G α ) ′ ) , where [ u ] denotes the equivalence class containing the vertex u . In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with H -rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with H -rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9).</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Equivalence</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Reduction</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaW2LDAMI7_xktUAUWqxAJYW27itCmkKXYq4DachZNhCBI7VvNm9N7M6CPkmMM5BzAXiQMaZFBwlluQTO-QEVdGsAJR72YtsGDagtonBymtACBrOSKn910baNu8hYouot8sE31t-iWdsujXT1SefX5o2kWKh2Sv9s8pHP3WMXm8vnqYTNns7uZ2cjljpeC2Z1XtDaLhsrJcgdbIDZjao62MzON5EGEugzKABVYopCgr5W1-TPKgvFJiTE6GvZvYvWxD6t2q28Z1PukKaa1FrXNqTIrBVcYupRhqt4lN6-O74-C-ibiBiMtE3A8Rp3NIDKGUzetFiH-r_0l9ATp6X-E</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yang, Jinling</creator><creator>Wang, Ligong</creator><creator>Yang, Xiuwen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6160-1761</orcidid></search><sort><creationdate>20210401</creationdate><title>Some mixed graphs with H-rank 4, 6 or 8</title><author>Yang, Jinling ; Wang, Ligong ; Yang, Xiuwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Equivalence</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Reduction</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jinling</creatorcontrib><creatorcontrib>Wang, Ligong</creatorcontrib><creatorcontrib>Yang, Xiuwen</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jinling</au><au>Wang, Ligong</au><au>Yang, Xiuwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some mixed graphs with H-rank 4, 6 or 8</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>41</volume><issue>3</issue><spage>678</spage><epage>693</epage><pages>678-693</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>The H -rank of a mixed graph G α is defined to be the rank of its Hermitian adjacency matrix H ( G α ) . If G α is switching equivalent to a mixed graph ( G α ) ′ , and two vertices u ,  v of G α have exactly the same neighborhood in ( G α ) ′ , then u and v are said to be twins. The twin reduction graph T G α of G α is a mixed graph whose vertices are the equivalence classes, and [ u ] [ v ] ∈ E ( T G α ) if u v ∈ E ( ( G α ) ′ ) , where [ u ] denotes the equivalence class containing the vertex u . In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with H -rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with H -rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00704-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6160-1761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2021-04, Vol.41 (3), p.678-693
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2499986634
source Springer Nature - Complete Springer Journals
subjects Apexes
Combinatorics
Convex and Discrete Geometry
Equivalence
Graph theory
Graphs
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Reduction
Theory of Computation
title Some mixed graphs with H-rank 4, 6 or 8
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20mixed%20graphs%20with%20H-rank%204,%C2%A06%20or%208&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Yang,%20Jinling&rft.date=2021-04-01&rft.volume=41&rft.issue=3&rft.spage=678&rft.epage=693&rft.pages=678-693&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00704-6&rft_dat=%3Cproquest_cross%3E2499986634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499986634&rft_id=info:pmid/&rfr_iscdi=true