Some mixed graphs with H-rank 4, 6 or 8
The H -rank of a mixed graph G α is defined to be the rank of its Hermitian adjacency matrix H ( G α ) . If G α is switching equivalent to a mixed graph ( G α ) ′ , and two vertices u , v of G α have exactly the same neighborhood in ( G α ) ′ , then u and v are said to be twins. The twin reduction...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2021-04, Vol.41 (3), p.678-693 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 693 |
---|---|
container_issue | 3 |
container_start_page | 678 |
container_title | Journal of combinatorial optimization |
container_volume | 41 |
creator | Yang, Jinling Wang, Ligong Yang, Xiuwen |
description | The
H
-rank of a mixed graph
G
α
is defined to be the rank of its Hermitian adjacency matrix
H
(
G
α
)
. If
G
α
is switching equivalent to a mixed graph
(
G
α
)
′
, and two vertices
u
,
v
of
G
α
have exactly the same neighborhood in
(
G
α
)
′
, then
u
and
v
are said to be twins. The twin reduction graph
T
G
α
of
G
α
is a mixed graph whose vertices are the equivalence classes, and
[
u
]
[
v
]
∈
E
(
T
G
α
)
if
u
v
∈
E
(
(
G
α
)
′
)
, where [
u
] denotes the equivalence class containing the vertex
u
. In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with
H
-rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with
H
-rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9). |
doi_str_mv | 10.1007/s10878-021-00704-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499986634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499986634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaW2LDAMI7_xktUAUWqxAJYW27itCmkKXYq4DachZNhCBI7VvNm9N7M6CPkmMM5BzAXiQMaZFBwlluQTO-QEVdGsAJR72YtsGDagtonBymtACBrOSKn910baNu8hYouot8sE31t-iWdsujXT1SefX5o2kWKh2Sv9s8pHP3WMXm8vnqYTNns7uZ2cjljpeC2Z1XtDaLhsrJcgdbIDZjao62MzON5EGEugzKABVYopCgr5W1-TPKgvFJiTE6GvZvYvWxD6t2q28Z1PukKaa1FrXNqTIrBVcYupRhqt4lN6-O74-C-ibiBiMtE3A8Rp3NIDKGUzetFiH-r_0l9ATp6X-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499986634</pqid></control><display><type>article</type><title>Some mixed graphs with H-rank 4, 6 or 8</title><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Jinling ; Wang, Ligong ; Yang, Xiuwen</creator><creatorcontrib>Yang, Jinling ; Wang, Ligong ; Yang, Xiuwen</creatorcontrib><description>The
H
-rank of a mixed graph
G
α
is defined to be the rank of its Hermitian adjacency matrix
H
(
G
α
)
. If
G
α
is switching equivalent to a mixed graph
(
G
α
)
′
, and two vertices
u
,
v
of
G
α
have exactly the same neighborhood in
(
G
α
)
′
, then
u
and
v
are said to be twins. The twin reduction graph
T
G
α
of
G
α
is a mixed graph whose vertices are the equivalence classes, and
[
u
]
[
v
]
∈
E
(
T
G
α
)
if
u
v
∈
E
(
(
G
α
)
′
)
, where [
u
] denotes the equivalence class containing the vertex
u
. In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with
H
-rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with
H
-rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9).</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00704-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Combinatorics ; Convex and Discrete Geometry ; Equivalence ; Graph theory ; Graphs ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Reduction ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2021-04, Vol.41 (3), p.678-693</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</citedby><cites>FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</cites><orcidid>0000-0002-6160-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00704-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00704-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Jinling</creatorcontrib><creatorcontrib>Wang, Ligong</creatorcontrib><creatorcontrib>Yang, Xiuwen</creatorcontrib><title>Some mixed graphs with H-rank 4, 6 or 8</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>The
H
-rank of a mixed graph
G
α
is defined to be the rank of its Hermitian adjacency matrix
H
(
G
α
)
. If
G
α
is switching equivalent to a mixed graph
(
G
α
)
′
, and two vertices
u
,
v
of
G
α
have exactly the same neighborhood in
(
G
α
)
′
, then
u
and
v
are said to be twins. The twin reduction graph
T
G
α
of
G
α
is a mixed graph whose vertices are the equivalence classes, and
[
u
]
[
v
]
∈
E
(
T
G
α
)
if
u
v
∈
E
(
(
G
α
)
′
)
, where [
u
] denotes the equivalence class containing the vertex
u
. In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with
H
-rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with
H
-rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9).</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Equivalence</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Reduction</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaW2LDAMI7_xktUAUWqxAJYW27itCmkKXYq4DachZNhCBI7VvNm9N7M6CPkmMM5BzAXiQMaZFBwlluQTO-QEVdGsAJR72YtsGDagtonBymtACBrOSKn910baNu8hYouot8sE31t-iWdsujXT1SefX5o2kWKh2Sv9s8pHP3WMXm8vnqYTNns7uZ2cjljpeC2Z1XtDaLhsrJcgdbIDZjao62MzON5EGEugzKABVYopCgr5W1-TPKgvFJiTE6GvZvYvWxD6t2q28Z1PukKaa1FrXNqTIrBVcYupRhqt4lN6-O74-C-ibiBiMtE3A8Rp3NIDKGUzetFiH-r_0l9ATp6X-E</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yang, Jinling</creator><creator>Wang, Ligong</creator><creator>Yang, Xiuwen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6160-1761</orcidid></search><sort><creationdate>20210401</creationdate><title>Some mixed graphs with H-rank 4, 6 or 8</title><author>Yang, Jinling ; Wang, Ligong ; Yang, Xiuwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-dfa788714d91506681707fa89d74871be3eb4e570828d8343cd5a969041e5a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Equivalence</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Reduction</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jinling</creatorcontrib><creatorcontrib>Wang, Ligong</creatorcontrib><creatorcontrib>Yang, Xiuwen</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jinling</au><au>Wang, Ligong</au><au>Yang, Xiuwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some mixed graphs with H-rank 4, 6 or 8</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>41</volume><issue>3</issue><spage>678</spage><epage>693</epage><pages>678-693</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>The
H
-rank of a mixed graph
G
α
is defined to be the rank of its Hermitian adjacency matrix
H
(
G
α
)
. If
G
α
is switching equivalent to a mixed graph
(
G
α
)
′
, and two vertices
u
,
v
of
G
α
have exactly the same neighborhood in
(
G
α
)
′
, then
u
and
v
are said to be twins. The twin reduction graph
T
G
α
of
G
α
is a mixed graph whose vertices are the equivalence classes, and
[
u
]
[
v
]
∈
E
(
T
G
α
)
if
u
v
∈
E
(
(
G
α
)
′
)
, where [
u
] denotes the equivalence class containing the vertex
u
. In this paper, we give the upper (resp., lower) bound of the number of vertices of the twin reduction graphs of connected mixed bipartite graphs, and characterize all twin reduction graphs of the connected mixed bipartite graphs with
H
-rank 4 (resp., 6 or 8). Then, we characterize all connected mixed graphs with
H
-rank 4 (resp., 6 or 8) among all mixed graphs containing induced mixed odd cycles whose lengths are no less than 5 (resp., 7 or 9).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00704-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6160-1761</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2021-04, Vol.41 (3), p.678-693 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2499986634 |
source | Springer Nature - Complete Springer Journals |
subjects | Apexes Combinatorics Convex and Discrete Geometry Equivalence Graph theory Graphs Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Reduction Theory of Computation |
title | Some mixed graphs with H-rank 4, 6 or 8 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20mixed%20graphs%20with%20H-rank%204,%C2%A06%20or%208&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Yang,%20Jinling&rft.date=2021-04-01&rft.volume=41&rft.issue=3&rft.spage=678&rft.epage=693&rft.pages=678-693&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00704-6&rft_dat=%3Cproquest_cross%3E2499986634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499986634&rft_id=info:pmid/&rfr_iscdi=true |