Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions

Herein, we succeed in achieving room-temperature persistent white afterglow by manipulating multi-mode triplet emissions from a single purely organic phosphorescence molecule. Two D-A-A′-D type organic isomers p DCzPyCN and o DCzPyCN are designed and synthesized, with two carbazolyls as the donors a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-01, Vol.9 (9), p.3257-3263
Hauptverfasser: Liu, Jianwei, Ma, Zhimin, Li, Zewei, Liu, Yan, Fu, Xiaohua, Jiang, Hong, Ma, Zhiyong, Jia, Xinru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3263
container_issue 9
container_start_page 3257
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 9
creator Liu, Jianwei
Ma, Zhimin
Li, Zewei
Liu, Yan
Fu, Xiaohua
Jiang, Hong
Ma, Zhiyong
Jia, Xinru
description Herein, we succeed in achieving room-temperature persistent white afterglow by manipulating multi-mode triplet emissions from a single purely organic phosphorescence molecule. Two D-A-A′-D type organic isomers p DCzPyCN and o DCzPyCN are designed and synthesized, with two carbazolyls as the donors and pyridine and a cyanogroup as the acceptors. Amazingly, o DCzPyCN and p DCzPyCN manifest white afterglow and green afterglow at room temperature, which lasts for over 3 s and 2 s, respectively. The white afterglow of o DCzPyCN is made up of thermally activated delayed fluorescence (TADF) (455 nm, ∼90 ms), distinguishable thermally activated delayed phosphorescence (TADP) (483 nm) and organic ultralong phosphorescence (OURTP) from the intermolecular interaction-stabilized triplet state (T 1 *) (542 nm and 592 nm, ∼240 ms). The calculated CIE x , y chromaticity coordinates are (0.30, 0.35) in the white-light zone. The green afterglow of p DCzPyCN contains TADF (475 nm, ∼51 ms), TADP from the lowest molecular triplet state (T 1 ) released from T 1 * (490 nm, ∼55 ms), and weak T 1 * emission (542 nm and 592 nm, ∼46 ms and ∼49 ms). Fascinatingly, both isomers adopt the unique multi-mode triplet emission mechanism but different emission components play a leading role in the final afterglow for each isomer, leading to the different afterglow colors. Single crystal analyses and TD-DFT calculations evidence the T 1 * phosphorescence. Temperature-dependent experiments validate the TADF and TADP of p DCzPyCN and o DCzPyCN. To the best of our knowledge, this is the first time that the afterglow color has been tuned and single component white afterglow has been finally realized by manipulating multi-mode triplet emissions. This work will help gain deep insight into the mechanism for organic afterglow and extend its application scope. Two isomers p DCzPyCN and o DCzPyCN are designed and synthesized. Amazingly, o DCzPyCN manifest white afterglow at room temperature. This is the first time that single-component white afterglow has finally been realized.
doi_str_mv 10.1039/d0tc05816e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499832058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499832058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-83d2e4d5616892fb446420d071009abc3ea0804f9fb3052fbec645c99914be1a3</originalsourceid><addsrcrecordid>eNpFkNFLwzAQh4MoOOZefBcCvgnVa5J2zaPMTYWBIPO5pOl1ZrRNTVLG_nujk3kvd_z4uDs-Qq5TuE-By4cagoasSHM8IxMGGSTzjIvz08zySzLzfgexIlXkckLKd2u7JGA3oFNhdEj3nyYgVX1NtW2tS8LYq6qNSRPQbVu7p9WBdqo3w9iqYPot7cY2mKSzNdLgzNBioNgZ743t_RW5aFTrcfbXp-RjtdwsXpL12_Pr4nGdaMGykBS8ZijqLI9vSdZUQuSCQQ3zFECqSnNUUIBoZFNxyCKAOheZllKmosJU8Sm5Pe4dnP0a0YdyZ0fXx5MlE1IWPDooInV3pLSz3jtsysGZTrlDmUL547B8gs3i1-EywjdH2Hl94v4d82_8v27P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499832058</pqid></control><display><type>article</type><title>Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Jianwei ; Ma, Zhimin ; Li, Zewei ; Liu, Yan ; Fu, Xiaohua ; Jiang, Hong ; Ma, Zhiyong ; Jia, Xinru</creator><creatorcontrib>Liu, Jianwei ; Ma, Zhimin ; Li, Zewei ; Liu, Yan ; Fu, Xiaohua ; Jiang, Hong ; Ma, Zhiyong ; Jia, Xinru</creatorcontrib><description>Herein, we succeed in achieving room-temperature persistent white afterglow by manipulating multi-mode triplet emissions from a single purely organic phosphorescence molecule. Two D-A-A′-D type organic isomers p DCzPyCN and o DCzPyCN are designed and synthesized, with two carbazolyls as the donors and pyridine and a cyanogroup as the acceptors. Amazingly, o DCzPyCN and p DCzPyCN manifest white afterglow and green afterglow at room temperature, which lasts for over 3 s and 2 s, respectively. The white afterglow of o DCzPyCN is made up of thermally activated delayed fluorescence (TADF) (455 nm, ∼90 ms), distinguishable thermally activated delayed phosphorescence (TADP) (483 nm) and organic ultralong phosphorescence (OURTP) from the intermolecular interaction-stabilized triplet state (T 1 *) (542 nm and 592 nm, ∼240 ms). The calculated CIE x , y chromaticity coordinates are (0.30, 0.35) in the white-light zone. The green afterglow of p DCzPyCN contains TADF (475 nm, ∼51 ms), TADP from the lowest molecular triplet state (T 1 ) released from T 1 * (490 nm, ∼55 ms), and weak T 1 * emission (542 nm and 592 nm, ∼46 ms and ∼49 ms). Fascinatingly, both isomers adopt the unique multi-mode triplet emission mechanism but different emission components play a leading role in the final afterglow for each isomer, leading to the different afterglow colors. Single crystal analyses and TD-DFT calculations evidence the T 1 * phosphorescence. Temperature-dependent experiments validate the TADF and TADP of p DCzPyCN and o DCzPyCN. To the best of our knowledge, this is the first time that the afterglow color has been tuned and single component white afterglow has been finally realized by manipulating multi-mode triplet emissions. This work will help gain deep insight into the mechanism for organic afterglow and extend its application scope. Two isomers p DCzPyCN and o DCzPyCN are designed and synthesized. Amazingly, o DCzPyCN manifest white afterglow at room temperature. This is the first time that single-component white afterglow has finally been realized.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc05816e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic energy levels ; Chromaticity ; Crystallography ; Donors (electronic) ; Emission ; Fluorescence ; Isomers ; Mathematical analysis ; Phosphorescence ; Room temperature ; Single crystals ; Temperature dependence ; White light</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-01, Vol.9 (9), p.3257-3263</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-83d2e4d5616892fb446420d071009abc3ea0804f9fb3052fbec645c99914be1a3</citedby><cites>FETCH-LOGICAL-c425t-83d2e4d5616892fb446420d071009abc3ea0804f9fb3052fbec645c99914be1a3</cites><orcidid>0000-0003-3187-2023 ; 0000-0002-0285-1867 ; 0000-0002-2942-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>Ma, Zhimin</creatorcontrib><creatorcontrib>Li, Zewei</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Fu, Xiaohua</creatorcontrib><creatorcontrib>Jiang, Hong</creatorcontrib><creatorcontrib>Ma, Zhiyong</creatorcontrib><creatorcontrib>Jia, Xinru</creatorcontrib><title>Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Herein, we succeed in achieving room-temperature persistent white afterglow by manipulating multi-mode triplet emissions from a single purely organic phosphorescence molecule. Two D-A-A′-D type organic isomers p DCzPyCN and o DCzPyCN are designed and synthesized, with two carbazolyls as the donors and pyridine and a cyanogroup as the acceptors. Amazingly, o DCzPyCN and p DCzPyCN manifest white afterglow and green afterglow at room temperature, which lasts for over 3 s and 2 s, respectively. The white afterglow of o DCzPyCN is made up of thermally activated delayed fluorescence (TADF) (455 nm, ∼90 ms), distinguishable thermally activated delayed phosphorescence (TADP) (483 nm) and organic ultralong phosphorescence (OURTP) from the intermolecular interaction-stabilized triplet state (T 1 *) (542 nm and 592 nm, ∼240 ms). The calculated CIE x , y chromaticity coordinates are (0.30, 0.35) in the white-light zone. The green afterglow of p DCzPyCN contains TADF (475 nm, ∼51 ms), TADP from the lowest molecular triplet state (T 1 ) released from T 1 * (490 nm, ∼55 ms), and weak T 1 * emission (542 nm and 592 nm, ∼46 ms and ∼49 ms). Fascinatingly, both isomers adopt the unique multi-mode triplet emission mechanism but different emission components play a leading role in the final afterglow for each isomer, leading to the different afterglow colors. Single crystal analyses and TD-DFT calculations evidence the T 1 * phosphorescence. Temperature-dependent experiments validate the TADF and TADP of p DCzPyCN and o DCzPyCN. To the best of our knowledge, this is the first time that the afterglow color has been tuned and single component white afterglow has been finally realized by manipulating multi-mode triplet emissions. This work will help gain deep insight into the mechanism for organic afterglow and extend its application scope. Two isomers p DCzPyCN and o DCzPyCN are designed and synthesized. Amazingly, o DCzPyCN manifest white afterglow at room temperature. This is the first time that single-component white afterglow has finally been realized.</description><subject>Atomic energy levels</subject><subject>Chromaticity</subject><subject>Crystallography</subject><subject>Donors (electronic)</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>Isomers</subject><subject>Mathematical analysis</subject><subject>Phosphorescence</subject><subject>Room temperature</subject><subject>Single crystals</subject><subject>Temperature dependence</subject><subject>White light</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkNFLwzAQh4MoOOZefBcCvgnVa5J2zaPMTYWBIPO5pOl1ZrRNTVLG_nujk3kvd_z4uDs-Qq5TuE-By4cagoasSHM8IxMGGSTzjIvz08zySzLzfgexIlXkckLKd2u7JGA3oFNhdEj3nyYgVX1NtW2tS8LYq6qNSRPQbVu7p9WBdqo3w9iqYPot7cY2mKSzNdLgzNBioNgZ743t_RW5aFTrcfbXp-RjtdwsXpL12_Pr4nGdaMGykBS8ZijqLI9vSdZUQuSCQQ3zFECqSnNUUIBoZFNxyCKAOheZllKmosJU8Sm5Pe4dnP0a0YdyZ0fXx5MlE1IWPDooInV3pLSz3jtsysGZTrlDmUL547B8gs3i1-EywjdH2Hl94v4d82_8v27P</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Jianwei</creator><creator>Ma, Zhimin</creator><creator>Li, Zewei</creator><creator>Liu, Yan</creator><creator>Fu, Xiaohua</creator><creator>Jiang, Hong</creator><creator>Ma, Zhiyong</creator><creator>Jia, Xinru</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3187-2023</orcidid><orcidid>https://orcid.org/0000-0002-0285-1867</orcidid><orcidid>https://orcid.org/0000-0002-2942-6545</orcidid></search><sort><creationdate>20210101</creationdate><title>Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions</title><author>Liu, Jianwei ; Ma, Zhimin ; Li, Zewei ; Liu, Yan ; Fu, Xiaohua ; Jiang, Hong ; Ma, Zhiyong ; Jia, Xinru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-83d2e4d5616892fb446420d071009abc3ea0804f9fb3052fbec645c99914be1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic energy levels</topic><topic>Chromaticity</topic><topic>Crystallography</topic><topic>Donors (electronic)</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>Isomers</topic><topic>Mathematical analysis</topic><topic>Phosphorescence</topic><topic>Room temperature</topic><topic>Single crystals</topic><topic>Temperature dependence</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jianwei</creatorcontrib><creatorcontrib>Ma, Zhimin</creatorcontrib><creatorcontrib>Li, Zewei</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Fu, Xiaohua</creatorcontrib><creatorcontrib>Jiang, Hong</creatorcontrib><creatorcontrib>Ma, Zhiyong</creatorcontrib><creatorcontrib>Jia, Xinru</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jianwei</au><au>Ma, Zhimin</au><au>Li, Zewei</au><au>Liu, Yan</au><au>Fu, Xiaohua</au><au>Jiang, Hong</au><au>Ma, Zhiyong</au><au>Jia, Xinru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>9</issue><spage>3257</spage><epage>3263</epage><pages>3257-3263</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Herein, we succeed in achieving room-temperature persistent white afterglow by manipulating multi-mode triplet emissions from a single purely organic phosphorescence molecule. Two D-A-A′-D type organic isomers p DCzPyCN and o DCzPyCN are designed and synthesized, with two carbazolyls as the donors and pyridine and a cyanogroup as the acceptors. Amazingly, o DCzPyCN and p DCzPyCN manifest white afterglow and green afterglow at room temperature, which lasts for over 3 s and 2 s, respectively. The white afterglow of o DCzPyCN is made up of thermally activated delayed fluorescence (TADF) (455 nm, ∼90 ms), distinguishable thermally activated delayed phosphorescence (TADP) (483 nm) and organic ultralong phosphorescence (OURTP) from the intermolecular interaction-stabilized triplet state (T 1 *) (542 nm and 592 nm, ∼240 ms). The calculated CIE x , y chromaticity coordinates are (0.30, 0.35) in the white-light zone. The green afterglow of p DCzPyCN contains TADF (475 nm, ∼51 ms), TADP from the lowest molecular triplet state (T 1 ) released from T 1 * (490 nm, ∼55 ms), and weak T 1 * emission (542 nm and 592 nm, ∼46 ms and ∼49 ms). Fascinatingly, both isomers adopt the unique multi-mode triplet emission mechanism but different emission components play a leading role in the final afterglow for each isomer, leading to the different afterglow colors. Single crystal analyses and TD-DFT calculations evidence the T 1 * phosphorescence. Temperature-dependent experiments validate the TADF and TADP of p DCzPyCN and o DCzPyCN. To the best of our knowledge, this is the first time that the afterglow color has been tuned and single component white afterglow has been finally realized by manipulating multi-mode triplet emissions. This work will help gain deep insight into the mechanism for organic afterglow and extend its application scope. Two isomers p DCzPyCN and o DCzPyCN are designed and synthesized. Amazingly, o DCzPyCN manifest white afterglow at room temperature. This is the first time that single-component white afterglow has finally been realized.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc05816e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3187-2023</orcidid><orcidid>https://orcid.org/0000-0002-0285-1867</orcidid><orcidid>https://orcid.org/0000-0002-2942-6545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-01, Vol.9 (9), p.3257-3263
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2499832058
source Royal Society Of Chemistry Journals 2008-
subjects Atomic energy levels
Chromaticity
Crystallography
Donors (electronic)
Emission
Fluorescence
Isomers
Mathematical analysis
Phosphorescence
Room temperature
Single crystals
Temperature dependence
White light
title Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20white%20and%20color-tunable%20afterglow%20by%20manipulating%20multi-mode%20triplet%20emissions&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Liu,%20Jianwei&rft.date=2021-01-01&rft.volume=9&rft.issue=9&rft.spage=3257&rft.epage=3263&rft.pages=3257-3263&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc05816e&rft_dat=%3Cproquest_cross%3E2499832058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499832058&rft_id=info:pmid/&rfr_iscdi=true