Filament dynamics in planar chemical gardens

Filaments in a planar chemical garden grow following tortuous, erratic paths. We show from statistical mechanics that this scaling results from a self-organized dispersion mechanism. Effective diffusivities as high as 10 −5 m 2 s −1 are measured in 2D laboratory experiments. This efficient transport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-03, Vol.23 (9), p.5222-5235
Hauptverfasser: Rocha, Luis A. M, Cartwright, Julyan H. E, Cardoso, Silvana S. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5235
container_issue 9
container_start_page 5222
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Rocha, Luis A. M
Cartwright, Julyan H. E
Cardoso, Silvana S. S
description Filaments in a planar chemical garden grow following tortuous, erratic paths. We show from statistical mechanics that this scaling results from a self-organized dispersion mechanism. Effective diffusivities as high as 10 −5 m 2 s −1 are measured in 2D laboratory experiments. This efficient transport is four orders of magnitude larger than molecular diffusion in a liquid, and ensures widespread contact and exchange between fluids in the chemical-garden structure and its surrounding environment. Modelling describes oscillatory dynamics of precipitate filaments; growth of an ensemble of filaments is a self-organized dispersion mechanism.
doi_str_mv 10.1039/d0cp03674a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499819263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499819263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-b0557b5580eafdb24e1b9e98002025ae4e5c8ac6ef7408b7a736fe4ca6f797a33</originalsourceid><addsrcrecordid>eNpd0c1LwzAYBvAgitPpxbtS8CJi9U3z1RzHdCoM9KDnkqZvtaNfJuth_72ZmxM8JeT98fDyhJAzCrcUmL4rwPbApOJmjxxRLlmsIeX7u7uSI3Ls_QIAqKDskIwYk0kwcERuZlVtGmyXUbFqTVNZH1Vt1NemNS6ynxheTB19GFdg60_IQWlqj6fbc0zeZw9v06d4_vL4PJ3MY8spLOMchFC5ECmgKYs84UhzjToFSCARBjkKmxorsVQc0lwZxWSJ3BpZKq0MY2NytcntXfc1oF9mTeUt1mEr7AafJVwzLoArGujlP7roBteG7dZKp1Qnch14vVHWdd47LLPeVY1xq4xCtu4wu4fp60-Hk4AvtpFD3mCxo7-lBXC-Ac7b3fTvE9g3Djhz1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499819263</pqid></control><display><type>article</type><title>Filament dynamics in planar chemical gardens</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Rocha, Luis A. M ; Cartwright, Julyan H. E ; Cardoso, Silvana S. S</creator><creatorcontrib>Rocha, Luis A. M ; Cartwright, Julyan H. E ; Cardoso, Silvana S. S</creatorcontrib><description>Filaments in a planar chemical garden grow following tortuous, erratic paths. We show from statistical mechanics that this scaling results from a self-organized dispersion mechanism. Effective diffusivities as high as 10 −5 m 2 s −1 are measured in 2D laboratory experiments. This efficient transport is four orders of magnitude larger than molecular diffusion in a liquid, and ensures widespread contact and exchange between fluids in the chemical-garden structure and its surrounding environment. Modelling describes oscillatory dynamics of precipitate filaments; growth of an ensemble of filaments is a self-organized dispersion mechanism.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp03674a</identifier><identifier>PMID: 33629080</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Filaments ; Molecular diffusion ; Statistical mechanics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-03, Vol.23 (9), p.5222-5235</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-b0557b5580eafdb24e1b9e98002025ae4e5c8ac6ef7408b7a736fe4ca6f797a33</citedby><cites>FETCH-LOGICAL-c410t-b0557b5580eafdb24e1b9e98002025ae4e5c8ac6ef7408b7a736fe4ca6f797a33</cites><orcidid>0000-0001-7392-0957 ; 0000-0003-2105-9485 ; 0000-0003-0417-035X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33629080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rocha, Luis A. M</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E</creatorcontrib><creatorcontrib>Cardoso, Silvana S. S</creatorcontrib><title>Filament dynamics in planar chemical gardens</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Filaments in a planar chemical garden grow following tortuous, erratic paths. We show from statistical mechanics that this scaling results from a self-organized dispersion mechanism. Effective diffusivities as high as 10 −5 m 2 s −1 are measured in 2D laboratory experiments. This efficient transport is four orders of magnitude larger than molecular diffusion in a liquid, and ensures widespread contact and exchange between fluids in the chemical-garden structure and its surrounding environment. Modelling describes oscillatory dynamics of precipitate filaments; growth of an ensemble of filaments is a self-organized dispersion mechanism.</description><subject>Filaments</subject><subject>Molecular diffusion</subject><subject>Statistical mechanics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAYBvAgitPpxbtS8CJi9U3z1RzHdCoM9KDnkqZvtaNfJuth_72ZmxM8JeT98fDyhJAzCrcUmL4rwPbApOJmjxxRLlmsIeX7u7uSI3Ls_QIAqKDskIwYk0kwcERuZlVtGmyXUbFqTVNZH1Vt1NemNS6ynxheTB19GFdg60_IQWlqj6fbc0zeZw9v06d4_vL4PJ3MY8spLOMchFC5ECmgKYs84UhzjToFSCARBjkKmxorsVQc0lwZxWSJ3BpZKq0MY2NytcntXfc1oF9mTeUt1mEr7AafJVwzLoArGujlP7roBteG7dZKp1Qnch14vVHWdd47LLPeVY1xq4xCtu4wu4fp60-Hk4AvtpFD3mCxo7-lBXC-Ac7b3fTvE9g3Djhz1Q</recordid><startdate>20210311</startdate><enddate>20210311</enddate><creator>Rocha, Luis A. M</creator><creator>Cartwright, Julyan H. E</creator><creator>Cardoso, Silvana S. S</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7392-0957</orcidid><orcidid>https://orcid.org/0000-0003-2105-9485</orcidid><orcidid>https://orcid.org/0000-0003-0417-035X</orcidid></search><sort><creationdate>20210311</creationdate><title>Filament dynamics in planar chemical gardens</title><author>Rocha, Luis A. M ; Cartwright, Julyan H. E ; Cardoso, Silvana S. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-b0557b5580eafdb24e1b9e98002025ae4e5c8ac6ef7408b7a736fe4ca6f797a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Filaments</topic><topic>Molecular diffusion</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Luis A. M</creatorcontrib><creatorcontrib>Cartwright, Julyan H. E</creatorcontrib><creatorcontrib>Cardoso, Silvana S. S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Luis A. M</au><au>Cartwright, Julyan H. E</au><au>Cardoso, Silvana S. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filament dynamics in planar chemical gardens</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2021-03-11</date><risdate>2021</risdate><volume>23</volume><issue>9</issue><spage>5222</spage><epage>5235</epage><pages>5222-5235</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Filaments in a planar chemical garden grow following tortuous, erratic paths. We show from statistical mechanics that this scaling results from a self-organized dispersion mechanism. Effective diffusivities as high as 10 −5 m 2 s −1 are measured in 2D laboratory experiments. This efficient transport is four orders of magnitude larger than molecular diffusion in a liquid, and ensures widespread contact and exchange between fluids in the chemical-garden structure and its surrounding environment. Modelling describes oscillatory dynamics of precipitate filaments; growth of an ensemble of filaments is a self-organized dispersion mechanism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33629080</pmid><doi>10.1039/d0cp03674a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7392-0957</orcidid><orcidid>https://orcid.org/0000-0003-2105-9485</orcidid><orcidid>https://orcid.org/0000-0003-0417-035X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-03, Vol.23 (9), p.5222-5235
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2499819263
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Filaments
Molecular diffusion
Statistical mechanics
title Filament dynamics in planar chemical gardens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filament%20dynamics%20in%20planar%20chemical%20gardens&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Rocha,%20Luis%20A.%20M&rft.date=2021-03-11&rft.volume=23&rft.issue=9&rft.spage=5222&rft.epage=5235&rft.pages=5222-5235&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp03674a&rft_dat=%3Cproquest_cross%3E2499819263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499819263&rft_id=info:pmid/33629080&rfr_iscdi=true