Research on the miscibility, mechanical properties and printability of polylactic acid/poly (ε-caprolactone) blends: insights from molecular dynamics simulation and experiments

As known, the poor toughness of Polylactic acid (PLA) limits its further application, especially as a bone implant withstanding complex loadings. Blending PLA with Poly (ε-caprolactone) (PCL) under the action of compatibilizers is a proven method to improve the toughness of PLA, while the excess com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-06, Vol.56 (16), p.9754-9768
Hauptverfasser: Wei, Qinghua, Sun, Daocen, Zhang, Kun, Wang, Yanmei, Guo, Ying, Wang, Yanen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9768
container_issue 16
container_start_page 9754
container_title Journal of materials science
container_volume 56
creator Wei, Qinghua
Sun, Daocen
Zhang, Kun
Wang, Yanmei
Guo, Ying
Wang, Yanen
description As known, the poor toughness of Polylactic acid (PLA) limits its further application, especially as a bone implant withstanding complex loadings. Blending PLA with Poly (ε-caprolactone) (PCL) under the action of compatibilizers is a proven method to improve the toughness of PLA, while the excess compatibilizers is hard to remove and easy to contaminate the matrix material. This study employed a molecular dynamics simulation combining experimental testing method to investigate the miscibility, mechanical properties and printability of PLA/PCL blends at different compositions without adding any compatibilizers, so as to obtain an ideal PLA/PCL filament for FDM printing bone scaffolds. Results of binding energy distribution and intermolecular interaction show that the miscibility of PLA and PCL is not very good, only the blend of 9PLA/1PCL is miscible. The calculated static mechanical properties and tensile testing results indicate the stiffness or hardness of blends decrease with the addition of PCL, while the toughness firstly increases and then decreases with the introduction of PCL, and the blend of 9PLA/1PCL possesses the best ductility and toughness. Moreover, the results of surface morphology confirm the miscible of 9PLA/1PCL blend and explain why the tensile properties of 9PLA/1PCL is the best, a better miscibility indicating better mechanical properties. Finally, the results of printability indicates that, due to the fluidity of PCL, the printability of blend becomes worse with the increase of PCL content, and the blend of 9PLA/1PCL possesses a relatively good printability. This work provides a practical guidance to the design of PLA/PCL blend filament for FDM printing bone scaffolds. Graphical Abstract
doi_str_mv 10.1007/s10853-021-05918-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2499661913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654612742</galeid><sourcerecordid>A654612742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b0dbbccf82bfb34525c8ef4f009f4feb01ac075a541474ac69cd430a7948ef613</originalsourceid><addsrcrecordid>eNp9UV1rFDEUHUTBtfoHfAr4ouC0N5nMl2-lVCsUCqU-h0zmZjdlJlmTLOz-rD74N_xN3nGEvkkg4d6ccz_OKYr3HM45QHuROHR1VYLgJdQ978rji2LD67YqZQfVy2IDIEQpZMNfF29SegSAuhV8UzzdY0IdzY4Fz_IO2eyScYObXD59ZjOanfbO6IntY9hjzA4T036k0PmsVxwLlu3DdJq0yc4wbdx4scTs4-9fpdHEXH6Cx09smNCP6QtzPrntLidmY5jZHCY0h0lHNp68np1JLLmZEtnRVEs7PFJzN6PP6W3xyuop4bt_71nx4-v1w9VNeXv37fvV5W1ppOC5HGAcBmNsJwY7VLIWtenQSgvQ040DcG2grXUtuWylNk1vRlmBbntJuIZXZ8WHtS7N__OAKavHcIieWioh-75peM8rQp2vqK2eUDlvQ47a0BmR9qCdraP8ZVOT9KKVgghiJZgYUopoFUk563hSHNTipVq9VOSl-uulOhKpWklp0X2L8XmW_7D-AOxrqEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499661913</pqid></control><display><type>article</type><title>Research on the miscibility, mechanical properties and printability of polylactic acid/poly (ε-caprolactone) blends: insights from molecular dynamics simulation and experiments</title><source>SpringerNature Journals</source><creator>Wei, Qinghua ; Sun, Daocen ; Zhang, Kun ; Wang, Yanmei ; Guo, Ying ; Wang, Yanen</creator><creatorcontrib>Wei, Qinghua ; Sun, Daocen ; Zhang, Kun ; Wang, Yanmei ; Guo, Ying ; Wang, Yanen</creatorcontrib><description>As known, the poor toughness of Polylactic acid (PLA) limits its further application, especially as a bone implant withstanding complex loadings. Blending PLA with Poly (ε-caprolactone) (PCL) under the action of compatibilizers is a proven method to improve the toughness of PLA, while the excess compatibilizers is hard to remove and easy to contaminate the matrix material. This study employed a molecular dynamics simulation combining experimental testing method to investigate the miscibility, mechanical properties and printability of PLA/PCL blends at different compositions without adding any compatibilizers, so as to obtain an ideal PLA/PCL filament for FDM printing bone scaffolds. Results of binding energy distribution and intermolecular interaction show that the miscibility of PLA and PCL is not very good, only the blend of 9PLA/1PCL is miscible. The calculated static mechanical properties and tensile testing results indicate the stiffness or hardness of blends decrease with the addition of PCL, while the toughness firstly increases and then decreases with the introduction of PCL, and the blend of 9PLA/1PCL possesses the best ductility and toughness. Moreover, the results of surface morphology confirm the miscible of 9PLA/1PCL blend and explain why the tensile properties of 9PLA/1PCL is the best, a better miscibility indicating better mechanical properties. Finally, the results of printability indicates that, due to the fluidity of PCL, the printability of blend becomes worse with the increase of PCL content, and the blend of 9PLA/1PCL possesses a relatively good printability. This work provides a practical guidance to the design of PLA/PCL blend filament for FDM printing bone scaffolds. Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-05918-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biopolymers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compatibility ; Compatibilizers ; Computation &amp; Theory ; Crystallography and Scattering Methods ; Energy distribution ; Hardness ; Materials Science ; Mechanical properties ; Miscibility ; Mixtures ; Molecular dynamics ; Morphology ; Polycaprolactone ; Polylactic acid ; Polymer Sciences ; Scaffolds ; Solid Mechanics ; Stiffness ; Tensile properties ; Tensile tests ; Toughness</subject><ispartof>Journal of materials science, 2021-06, Vol.56 (16), p.9754-9768</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b0dbbccf82bfb34525c8ef4f009f4feb01ac075a541474ac69cd430a7948ef613</citedby><cites>FETCH-LOGICAL-c421t-b0dbbccf82bfb34525c8ef4f009f4feb01ac075a541474ac69cd430a7948ef613</cites><orcidid>0000-0003-0092-8549 ; 0000-0002-2738-3756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-05918-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-05918-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wei, Qinghua</creatorcontrib><creatorcontrib>Sun, Daocen</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wang, Yanmei</creatorcontrib><creatorcontrib>Guo, Ying</creatorcontrib><creatorcontrib>Wang, Yanen</creatorcontrib><title>Research on the miscibility, mechanical properties and printability of polylactic acid/poly (ε-caprolactone) blends: insights from molecular dynamics simulation and experiments</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>As known, the poor toughness of Polylactic acid (PLA) limits its further application, especially as a bone implant withstanding complex loadings. Blending PLA with Poly (ε-caprolactone) (PCL) under the action of compatibilizers is a proven method to improve the toughness of PLA, while the excess compatibilizers is hard to remove and easy to contaminate the matrix material. This study employed a molecular dynamics simulation combining experimental testing method to investigate the miscibility, mechanical properties and printability of PLA/PCL blends at different compositions without adding any compatibilizers, so as to obtain an ideal PLA/PCL filament for FDM printing bone scaffolds. Results of binding energy distribution and intermolecular interaction show that the miscibility of PLA and PCL is not very good, only the blend of 9PLA/1PCL is miscible. The calculated static mechanical properties and tensile testing results indicate the stiffness or hardness of blends decrease with the addition of PCL, while the toughness firstly increases and then decreases with the introduction of PCL, and the blend of 9PLA/1PCL possesses the best ductility and toughness. Moreover, the results of surface morphology confirm the miscible of 9PLA/1PCL blend and explain why the tensile properties of 9PLA/1PCL is the best, a better miscibility indicating better mechanical properties. Finally, the results of printability indicates that, due to the fluidity of PCL, the printability of blend becomes worse with the increase of PCL content, and the blend of 9PLA/1PCL possesses a relatively good printability. This work provides a practical guidance to the design of PLA/PCL blend filament for FDM printing bone scaffolds. Graphical Abstract</description><subject>Biopolymers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compatibility</subject><subject>Compatibilizers</subject><subject>Computation &amp; Theory</subject><subject>Crystallography and Scattering Methods</subject><subject>Energy distribution</subject><subject>Hardness</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Miscibility</subject><subject>Mixtures</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>Polycaprolactone</subject><subject>Polylactic acid</subject><subject>Polymer Sciences</subject><subject>Scaffolds</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Toughness</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UV1rFDEUHUTBtfoHfAr4ouC0N5nMl2-lVCsUCqU-h0zmZjdlJlmTLOz-rD74N_xN3nGEvkkg4d6ccz_OKYr3HM45QHuROHR1VYLgJdQ978rji2LD67YqZQfVy2IDIEQpZMNfF29SegSAuhV8UzzdY0IdzY4Fz_IO2eyScYObXD59ZjOanfbO6IntY9hjzA4T036k0PmsVxwLlu3DdJq0yc4wbdx4scTs4-9fpdHEXH6Cx09smNCP6QtzPrntLidmY5jZHCY0h0lHNp68np1JLLmZEtnRVEs7PFJzN6PP6W3xyuop4bt_71nx4-v1w9VNeXv37fvV5W1ppOC5HGAcBmNsJwY7VLIWtenQSgvQ040DcG2grXUtuWylNk1vRlmBbntJuIZXZ8WHtS7N__OAKavHcIieWioh-75peM8rQp2vqK2eUDlvQ47a0BmR9qCdraP8ZVOT9KKVgghiJZgYUopoFUk563hSHNTipVq9VOSl-uulOhKpWklp0X2L8XmW_7D-AOxrqEw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Wei, Qinghua</creator><creator>Sun, Daocen</creator><creator>Zhang, Kun</creator><creator>Wang, Yanmei</creator><creator>Guo, Ying</creator><creator>Wang, Yanen</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0092-8549</orcidid><orcidid>https://orcid.org/0000-0002-2738-3756</orcidid></search><sort><creationdate>20210601</creationdate><title>Research on the miscibility, mechanical properties and printability of polylactic acid/poly (ε-caprolactone) blends: insights from molecular dynamics simulation and experiments</title><author>Wei, Qinghua ; Sun, Daocen ; Zhang, Kun ; Wang, Yanmei ; Guo, Ying ; Wang, Yanen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b0dbbccf82bfb34525c8ef4f009f4feb01ac075a541474ac69cd430a7948ef613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biopolymers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compatibility</topic><topic>Compatibilizers</topic><topic>Computation &amp; Theory</topic><topic>Crystallography and Scattering Methods</topic><topic>Energy distribution</topic><topic>Hardness</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Miscibility</topic><topic>Mixtures</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>Polycaprolactone</topic><topic>Polylactic acid</topic><topic>Polymer Sciences</topic><topic>Scaffolds</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Qinghua</creatorcontrib><creatorcontrib>Sun, Daocen</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wang, Yanmei</creatorcontrib><creatorcontrib>Guo, Ying</creatorcontrib><creatorcontrib>Wang, Yanen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Qinghua</au><au>Sun, Daocen</au><au>Zhang, Kun</au><au>Wang, Yanmei</au><au>Guo, Ying</au><au>Wang, Yanen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the miscibility, mechanical properties and printability of polylactic acid/poly (ε-caprolactone) blends: insights from molecular dynamics simulation and experiments</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>56</volume><issue>16</issue><spage>9754</spage><epage>9768</epage><pages>9754-9768</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>As known, the poor toughness of Polylactic acid (PLA) limits its further application, especially as a bone implant withstanding complex loadings. Blending PLA with Poly (ε-caprolactone) (PCL) under the action of compatibilizers is a proven method to improve the toughness of PLA, while the excess compatibilizers is hard to remove and easy to contaminate the matrix material. This study employed a molecular dynamics simulation combining experimental testing method to investigate the miscibility, mechanical properties and printability of PLA/PCL blends at different compositions without adding any compatibilizers, so as to obtain an ideal PLA/PCL filament for FDM printing bone scaffolds. Results of binding energy distribution and intermolecular interaction show that the miscibility of PLA and PCL is not very good, only the blend of 9PLA/1PCL is miscible. The calculated static mechanical properties and tensile testing results indicate the stiffness or hardness of blends decrease with the addition of PCL, while the toughness firstly increases and then decreases with the introduction of PCL, and the blend of 9PLA/1PCL possesses the best ductility and toughness. Moreover, the results of surface morphology confirm the miscible of 9PLA/1PCL blend and explain why the tensile properties of 9PLA/1PCL is the best, a better miscibility indicating better mechanical properties. Finally, the results of printability indicates that, due to the fluidity of PCL, the printability of blend becomes worse with the increase of PCL content, and the blend of 9PLA/1PCL possesses a relatively good printability. This work provides a practical guidance to the design of PLA/PCL blend filament for FDM printing bone scaffolds. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-05918-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0092-8549</orcidid><orcidid>https://orcid.org/0000-0002-2738-3756</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-06, Vol.56 (16), p.9754-9768
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2499661913
source SpringerNature Journals
subjects Biopolymers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compatibility
Compatibilizers
Computation & Theory
Crystallography and Scattering Methods
Energy distribution
Hardness
Materials Science
Mechanical properties
Miscibility
Mixtures
Molecular dynamics
Morphology
Polycaprolactone
Polylactic acid
Polymer Sciences
Scaffolds
Solid Mechanics
Stiffness
Tensile properties
Tensile tests
Toughness
title Research on the miscibility, mechanical properties and printability of polylactic acid/poly (ε-caprolactone) blends: insights from molecular dynamics simulation and experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20miscibility,%20mechanical%20properties%20and%20printability%20of%20polylactic%20acid/poly%20(%CE%B5-caprolactone)%20blends:%20insights%20from%20molecular%20dynamics%20simulation%20and%20experiments&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wei,%20Qinghua&rft.date=2021-06-01&rft.volume=56&rft.issue=16&rft.spage=9754&rft.epage=9768&rft.pages=9754-9768&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-05918-x&rft_dat=%3Cgale_proqu%3EA654612742%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499661913&rft_id=info:pmid/&rft_galeid=A654612742&rfr_iscdi=true