Research on rhenium–iridium alloy coating on microgroove molds in precision glass molding
There is an increasing demand for microgrooves in optical systems with a pitch at wave length level. Precision glass molding (PGM) is one of the most efficient methods for fabricating microgrooves on glass surface. Nickel–phosphorus (Ni–P) exhibits excellent cutting properties and is developed as th...
Gespeichert in:
Veröffentlicht in: | Applied nanoscience 2021-03, Vol.11 (3), p.797-806 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is an increasing demand for microgrooves in optical systems with a pitch at wave length level. Precision glass molding (PGM) is one of the most efficient methods for fabricating microgrooves on glass surface. Nickel–phosphorus (Ni–P) exhibits excellent cutting properties and is developed as the mold material for glass microgrooves. However, the phosphorus in Ni–P mold tends to diffuse into the glass during the PGM process at high temperatures, which may reduce the optical performance of the molded glass microgroove component. In addition, the atomic diffusion increases the interface friction coefficient between the glass and the mold, resulting in the decrease of molding accuracy of the microgroove array. To solve these problems, a rhenium–iridium (Re–Ir) alloy coating is deposited on the surface of the Ni–P microgroove mold by ion sputtering. In this paper, the surface roughness of the mold before and after coating with Re–Ir alloy coating is investigated. The mechanical properties of Ni–P and the Re–Ir alloy coating are obtained using a combination of finite element method (FEM) and experimental tests. The mold deformation after heating to the molding temperature is analyzed. The results show that the mechanical properties of the Ni–P mold surface can be strengthened after being plated with Re–Ir alloy coating, the Re–Ir coating isolates the diffusion of phosphorus from the Ni–P mold, and improve the forming accuracy of glass microgrooves. |
---|---|
ISSN: | 2190-5509 2190-5517 |
DOI: | 10.1007/s13204-019-01097-z |