Constructing 3D Models of Rigid Objects from Satellite Images with High Spatial Resolution Using Convolutional Neural Networks

— A way of constructing 3D models of rigid objects from one satellite image is described. It is based on the use of two convolution neural networks which sequentially process high-resolution satellite images. The first neural network performs integral image analysis for segmentation and identificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Atmospheric and oceanic physics 2020-12, Vol.56 (12), p.1664-1677
Hauptverfasser: Gvozdev, O. G., Kozub, V. A., Kosheleva, N. V., Murynin, A. B., Richter, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1677
container_issue 12
container_start_page 1664
container_title Izvestiya. Atmospheric and oceanic physics
container_volume 56
creator Gvozdev, O. G.
Kozub, V. A.
Kosheleva, N. V.
Murynin, A. B.
Richter, A. A.
description — A way of constructing 3D models of rigid objects from one satellite image is described. It is based on the use of two convolution neural networks which sequentially process high-resolution satellite images. The first neural network performs integral image analysis for segmentation and identification of objects of specified physical classes. The second neural network performs local image analysis and works with images segmented by the first neural network in areas of the image that presumably contain objects of specified classes. An algorithm for reconstructing a 3D model of an object from raster domains of a segmented image obtained from local analysis is described. It is based on regression analysis, the assessing of equivalent figures, and the linearization and polarization of contours. Results from the algorithm’s operation are given using the example of railway infrastructure facilities. The results from constructing 3D models of three objects of the railway infrastructure, identified via the operation of neural networks for four informative classes of areas are presented, e.g. roofs, walls, railroad tracks, contanc lines (poles). Standard dimensions (e.g., the railway gauge (1.52 m) and the height of railway support poles (11.35 m)) are used to estimate scaling coefficients that allow determination of base dimensions and object heights. The possibility of constructing 3D models of objects of areas from 210 to 4200 m 2 is shown.
doi_str_mv 10.1134/S0001433820120427
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499403983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499403983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-55383943d9c38c5d5babfd94d1f03cc843600f4f3354487fe81d3ccdf4e648313</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqLgnP4AbwHP1aRv0qVHmR8bTAebA2-lS5Mus2tmkjq8-Ntt3cCDeHrg-XpfHoQuKbmmFNjNnBBCGYCICY0JiwdHqEc551ESi9dj1OvkqNNP0Zn3a0KSmJFBD30Nbe2Da2QwdYnhDj_ZQlUeW41npjQFni7XSgaPtbMbPM-DqioTFB5v8lJ5vDNhhUemXOH5Ng8mr_BMeVs1wdgaL3zX2R74ODCt_Kwa9wNhZ92bP0cnOq-8ujhgHy0e7l-Go2gyfRwPbyeRBJqEiHMQkDIoUglC8oIv86UuUlZQTUBKwSAhRDMNwBkTA60ELVq-0EwlTACFPrra926dfW-UD9naNq59yGcxS1NGIBXQuujeJZ313imdbZ3Z5O4zoyTrZs7-zNxm4n3Gt966VO63-f_QN6G6f5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499403983</pqid></control><display><type>article</type><title>Constructing 3D Models of Rigid Objects from Satellite Images with High Spatial Resolution Using Convolutional Neural Networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gvozdev, O. G. ; Kozub, V. A. ; Kosheleva, N. V. ; Murynin, A. B. ; Richter, A. A.</creator><creatorcontrib>Gvozdev, O. G. ; Kozub, V. A. ; Kosheleva, N. V. ; Murynin, A. B. ; Richter, A. A.</creatorcontrib><description>— A way of constructing 3D models of rigid objects from one satellite image is described. It is based on the use of two convolution neural networks which sequentially process high-resolution satellite images. The first neural network performs integral image analysis for segmentation and identification of objects of specified physical classes. The second neural network performs local image analysis and works with images segmented by the first neural network in areas of the image that presumably contain objects of specified classes. An algorithm for reconstructing a 3D model of an object from raster domains of a segmented image obtained from local analysis is described. It is based on regression analysis, the assessing of equivalent figures, and the linearization and polarization of contours. Results from the algorithm’s operation are given using the example of railway infrastructure facilities. The results from constructing 3D models of three objects of the railway infrastructure, identified via the operation of neural networks for four informative classes of areas are presented, e.g. roofs, walls, railroad tracks, contanc lines (poles). Standard dimensions (e.g., the railway gauge (1.52 m) and the height of railway support poles (11.35 m)) are used to estimate scaling coefficients that allow determination of base dimensions and object heights. The possibility of constructing 3D models of objects of areas from 210 to 4200 m 2 is shown.</description><identifier>ISSN: 0001-4338</identifier><identifier>EISSN: 1555-628X</identifier><identifier>DOI: 10.1134/S0001433820120427</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Climatology ; Coefficients ; Convolution ; Dimensions ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; High resolution ; Image analysis ; Image processing ; Image reconstruction ; Image resolution ; Image segmentation ; Infrastructure ; Neural networks ; Poles ; Railway construction ; Railway tracks ; Regression analysis ; Resolution ; Satellite imagery ; Satellites ; Scaling ; Spaceborne remote sensing ; Spatial discrimination ; Spatial resolution ; Three dimensional models ; Ways and Means of Processing and Interpreting Space-Based Information</subject><ispartof>Izvestiya. Atmospheric and oceanic physics, 2020-12, Vol.56 (12), p.1664-1677</ispartof><rights>Pleiades Publishing, Ltd. 2020. ISSN 0001-4338, Izvestiya, Atmospheric and Oceanic Physics, 2020, Vol. 56, No. 12, pp. 1664–1677. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2020, published in Issledovanie Zemli iz Kosmosa, 2020, No. 5, pp. 78–96.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-55383943d9c38c5d5babfd94d1f03cc843600f4f3354487fe81d3ccdf4e648313</citedby><cites>FETCH-LOGICAL-c316t-55383943d9c38c5d5babfd94d1f03cc843600f4f3354487fe81d3ccdf4e648313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001433820120427$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001433820120427$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gvozdev, O. G.</creatorcontrib><creatorcontrib>Kozub, V. A.</creatorcontrib><creatorcontrib>Kosheleva, N. V.</creatorcontrib><creatorcontrib>Murynin, A. B.</creatorcontrib><creatorcontrib>Richter, A. A.</creatorcontrib><title>Constructing 3D Models of Rigid Objects from Satellite Images with High Spatial Resolution Using Convolutional Neural Networks</title><title>Izvestiya. Atmospheric and oceanic physics</title><addtitle>Izv. Atmos. Ocean. Phys</addtitle><description>— A way of constructing 3D models of rigid objects from one satellite image is described. It is based on the use of two convolution neural networks which sequentially process high-resolution satellite images. The first neural network performs integral image analysis for segmentation and identification of objects of specified physical classes. The second neural network performs local image analysis and works with images segmented by the first neural network in areas of the image that presumably contain objects of specified classes. An algorithm for reconstructing a 3D model of an object from raster domains of a segmented image obtained from local analysis is described. It is based on regression analysis, the assessing of equivalent figures, and the linearization and polarization of contours. Results from the algorithm’s operation are given using the example of railway infrastructure facilities. The results from constructing 3D models of three objects of the railway infrastructure, identified via the operation of neural networks for four informative classes of areas are presented, e.g. roofs, walls, railroad tracks, contanc lines (poles). Standard dimensions (e.g., the railway gauge (1.52 m) and the height of railway support poles (11.35 m)) are used to estimate scaling coefficients that allow determination of base dimensions and object heights. The possibility of constructing 3D models of objects of areas from 210 to 4200 m 2 is shown.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Climatology</subject><subject>Coefficients</subject><subject>Convolution</subject><subject>Dimensions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>High resolution</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Infrastructure</subject><subject>Neural networks</subject><subject>Poles</subject><subject>Railway construction</subject><subject>Railway tracks</subject><subject>Regression analysis</subject><subject>Resolution</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Scaling</subject><subject>Spaceborne remote sensing</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Three dimensional models</subject><subject>Ways and Means of Processing and Interpreting Space-Based Information</subject><issn>0001-4338</issn><issn>1555-628X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LwzAYDqLgnP4AbwHP1aRv0qVHmR8bTAebA2-lS5Mus2tmkjq8-Ntt3cCDeHrg-XpfHoQuKbmmFNjNnBBCGYCICY0JiwdHqEc551ESi9dj1OvkqNNP0Zn3a0KSmJFBD30Nbe2Da2QwdYnhDj_ZQlUeW41npjQFni7XSgaPtbMbPM-DqioTFB5v8lJ5vDNhhUemXOH5Ng8mr_BMeVs1wdgaL3zX2R74ODCt_Kwa9wNhZ92bP0cnOq-8ujhgHy0e7l-Go2gyfRwPbyeRBJqEiHMQkDIoUglC8oIv86UuUlZQTUBKwSAhRDMNwBkTA60ELVq-0EwlTACFPrra926dfW-UD9naNq59yGcxS1NGIBXQuujeJZ313imdbZ3Z5O4zoyTrZs7-zNxm4n3Gt966VO63-f_QN6G6f5g</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gvozdev, O. G.</creator><creator>Kozub, V. A.</creator><creator>Kosheleva, N. V.</creator><creator>Murynin, A. B.</creator><creator>Richter, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20201201</creationdate><title>Constructing 3D Models of Rigid Objects from Satellite Images with High Spatial Resolution Using Convolutional Neural Networks</title><author>Gvozdev, O. G. ; Kozub, V. A. ; Kosheleva, N. V. ; Murynin, A. B. ; Richter, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-55383943d9c38c5d5babfd94d1f03cc843600f4f3354487fe81d3ccdf4e648313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Climatology</topic><topic>Coefficients</topic><topic>Convolution</topic><topic>Dimensions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>High resolution</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Infrastructure</topic><topic>Neural networks</topic><topic>Poles</topic><topic>Railway construction</topic><topic>Railway tracks</topic><topic>Regression analysis</topic><topic>Resolution</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Scaling</topic><topic>Spaceborne remote sensing</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Three dimensional models</topic><topic>Ways and Means of Processing and Interpreting Space-Based Information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gvozdev, O. G.</creatorcontrib><creatorcontrib>Kozub, V. A.</creatorcontrib><creatorcontrib>Kosheleva, N. V.</creatorcontrib><creatorcontrib>Murynin, A. B.</creatorcontrib><creatorcontrib>Richter, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gvozdev, O. G.</au><au>Kozub, V. A.</au><au>Kosheleva, N. V.</au><au>Murynin, A. B.</au><au>Richter, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing 3D Models of Rigid Objects from Satellite Images with High Spatial Resolution Using Convolutional Neural Networks</atitle><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle><stitle>Izv. Atmos. Ocean. Phys</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>56</volume><issue>12</issue><spage>1664</spage><epage>1677</epage><pages>1664-1677</pages><issn>0001-4338</issn><eissn>1555-628X</eissn><abstract>— A way of constructing 3D models of rigid objects from one satellite image is described. It is based on the use of two convolution neural networks which sequentially process high-resolution satellite images. The first neural network performs integral image analysis for segmentation and identification of objects of specified physical classes. The second neural network performs local image analysis and works with images segmented by the first neural network in areas of the image that presumably contain objects of specified classes. An algorithm for reconstructing a 3D model of an object from raster domains of a segmented image obtained from local analysis is described. It is based on regression analysis, the assessing of equivalent figures, and the linearization and polarization of contours. Results from the algorithm’s operation are given using the example of railway infrastructure facilities. The results from constructing 3D models of three objects of the railway infrastructure, identified via the operation of neural networks for four informative classes of areas are presented, e.g. roofs, walls, railroad tracks, contanc lines (poles). Standard dimensions (e.g., the railway gauge (1.52 m) and the height of railway support poles (11.35 m)) are used to estimate scaling coefficients that allow determination of base dimensions and object heights. The possibility of constructing 3D models of objects of areas from 210 to 4200 m 2 is shown.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001433820120427</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4338
ispartof Izvestiya. Atmospheric and oceanic physics, 2020-12, Vol.56 (12), p.1664-1677
issn 0001-4338
1555-628X
language eng
recordid cdi_proquest_journals_2499403983
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial neural networks
Climatology
Coefficients
Convolution
Dimensions
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
High resolution
Image analysis
Image processing
Image reconstruction
Image resolution
Image segmentation
Infrastructure
Neural networks
Poles
Railway construction
Railway tracks
Regression analysis
Resolution
Satellite imagery
Satellites
Scaling
Spaceborne remote sensing
Spatial discrimination
Spatial resolution
Three dimensional models
Ways and Means of Processing and Interpreting Space-Based Information
title Constructing 3D Models of Rigid Objects from Satellite Images with High Spatial Resolution Using Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%203D%20Models%20of%20Rigid%20Objects%20from%20Satellite%20Images%20with%20High%20Spatial%20Resolution%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=Izvestiya.%20Atmospheric%20and%20oceanic%20physics&rft.au=Gvozdev,%20O.%20G.&rft.date=2020-12-01&rft.volume=56&rft.issue=12&rft.spage=1664&rft.epage=1677&rft.pages=1664-1677&rft.issn=0001-4338&rft.eissn=1555-628X&rft_id=info:doi/10.1134/S0001433820120427&rft_dat=%3Cproquest_cross%3E2499403983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499403983&rft_id=info:pmid/&rfr_iscdi=true