New approach to waste-heat energy harvesting: pyroelectric energy conversion

Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia Materials 2019-06, Vol.11 (1), Article 26
Hauptverfasser: Pandya, Shishir, Velarde, Gabriel, Zhang, Lei, Wilbur, Joshua D., Smith, Andrew, Hanrahan, Brendan, Dames, Chris, Martin, Lane W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title NPG Asia Materials
container_volume 11
creator Pandya, Shishir
Velarde, Gabriel
Zhang, Lei
Wilbur, Joshua D.
Smith, Andrew
Hanrahan, Brendan
Dames, Chris
Martin, Lane W.
description Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed. With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power.
doi_str_mv 10.1038/s41427-019-0125-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2499400677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499400677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EElXpB7CLYB3wOHacsEMVL6mCDawtxx03qUoc7LRV_h5X4bGCxWhGmnNHd3QJOQd6BTQrrgMHzmRKoYzFRDockQkUBU85FfL4Z-blKZmFsKaUQp7zQvAJWTzjPtFd5502ddK7ZK9Dj2mNuk-wRb8aklr7HYa-aVc3STd4hxs0vW_M9964doc-NK49IydWbwLOvvqUvN3fvc4f08XLw9P8dpEakRV9ygrDlozzwgoNaMqlrEqWAatESQ0UVGpLwTJhhYGlBZ0hh4rJDCsU1qDOpuRivOuiLRVM06Opo402GlMgOOMsj9DlCMXfPrbxAbV2W99GX4rxsuSU5lL-S7EsByGkgEjBSBnvQvBoVeebd-0HBVQdIlBjBCpGoA4RqCFq2KgJkW1X6H8v_y36BFj2iNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236155751</pqid></control><display><type>article</type><title>New approach to waste-heat energy harvesting: pyroelectric energy conversion</title><source>SpringerOpen</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Pandya, Shishir ; Velarde, Gabriel ; Zhang, Lei ; Wilbur, Joshua D. ; Smith, Andrew ; Hanrahan, Brendan ; Dames, Chris ; Martin, Lane W.</creator><creatorcontrib>Pandya, Shishir ; Velarde, Gabriel ; Zhang, Lei ; Wilbur, Joshua D. ; Smith, Andrew ; Hanrahan, Brendan ; Dames, Chris ; Martin, Lane W. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed. With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-019-0125-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/299/2736 ; 639/766/25 ; 639/925/927/1007 ; Biomaterials ; Chemistry and Materials Science ; Electrical properties ; Energy ; Energy conversion efficiency ; Energy harvesting ; Energy Systems ; Energy utilization ; Heat ; MATERIALS SCIENCE ; Optical and Electronic Materials ; Perspective ; Photovoltaic cells ; Structural Materials ; Surface and Interface Science ; Thermodynamic cycles ; Thin Films ; Waste heat</subject><ispartof>NPG Asia Materials, 2019-06, Vol.11 (1), Article 26</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</citedby><cites>FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</cites><orcidid>0000-0003-1889-2513 ; 0000000318892513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-019-0125-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-019-0125-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,865,886,27929,27930,41125,42194,51581</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1542426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandya, Shishir</creatorcontrib><creatorcontrib>Velarde, Gabriel</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wilbur, Joshua D.</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Hanrahan, Brendan</creatorcontrib><creatorcontrib>Dames, Chris</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>New approach to waste-heat energy harvesting: pyroelectric energy conversion</title><title>NPG Asia Materials</title><addtitle>NPG Asia Mater</addtitle><description>Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed. With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power.</description><subject>639/166/987</subject><subject>639/301/299/2736</subject><subject>639/766/25</subject><subject>639/925/927/1007</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Energy Systems</subject><subject>Energy utilization</subject><subject>Heat</subject><subject>MATERIALS SCIENCE</subject><subject>Optical and Electronic Materials</subject><subject>Perspective</subject><subject>Photovoltaic cells</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thermodynamic cycles</subject><subject>Thin Films</subject><subject>Waste heat</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctOwzAQRS0EElXpB7CLYB3wOHacsEMVL6mCDawtxx03qUoc7LRV_h5X4bGCxWhGmnNHd3QJOQd6BTQrrgMHzmRKoYzFRDockQkUBU85FfL4Z-blKZmFsKaUQp7zQvAJWTzjPtFd5502ddK7ZK9Dj2mNuk-wRb8aklr7HYa-aVc3STd4hxs0vW_M9964doc-NK49IydWbwLOvvqUvN3fvc4f08XLw9P8dpEakRV9ygrDlozzwgoNaMqlrEqWAatESQ0UVGpLwTJhhYGlBZ0hh4rJDCsU1qDOpuRivOuiLRVM06Opo402GlMgOOMsj9DlCMXfPrbxAbV2W99GX4rxsuSU5lL-S7EsByGkgEjBSBnvQvBoVeebd-0HBVQdIlBjBCpGoA4RqCFq2KgJkW1X6H8v_y36BFj2iNw</recordid><startdate>20190607</startdate><enddate>20190607</enddate><creator>Pandya, Shishir</creator><creator>Velarde, Gabriel</creator><creator>Zhang, Lei</creator><creator>Wilbur, Joshua D.</creator><creator>Smith, Andrew</creator><creator>Hanrahan, Brendan</creator><creator>Dames, Chris</creator><creator>Martin, Lane W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group Asia</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid></search><sort><creationdate>20190607</creationdate><title>New approach to waste-heat energy harvesting: pyroelectric energy conversion</title><author>Pandya, Shishir ; Velarde, Gabriel ; Zhang, Lei ; Wilbur, Joshua D. ; Smith, Andrew ; Hanrahan, Brendan ; Dames, Chris ; Martin, Lane W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166/987</topic><topic>639/301/299/2736</topic><topic>639/766/25</topic><topic>639/925/927/1007</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Energy Systems</topic><topic>Energy utilization</topic><topic>Heat</topic><topic>MATERIALS SCIENCE</topic><topic>Optical and Electronic Materials</topic><topic>Perspective</topic><topic>Photovoltaic cells</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thermodynamic cycles</topic><topic>Thin Films</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandya, Shishir</creatorcontrib><creatorcontrib>Velarde, Gabriel</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wilbur, Joshua D.</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Hanrahan, Brendan</creatorcontrib><creatorcontrib>Dames, Chris</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>NPG Asia Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandya, Shishir</au><au>Velarde, Gabriel</au><au>Zhang, Lei</au><au>Wilbur, Joshua D.</au><au>Smith, Andrew</au><au>Hanrahan, Brendan</au><au>Dames, Chris</au><au>Martin, Lane W.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approach to waste-heat energy harvesting: pyroelectric energy conversion</atitle><jtitle>NPG Asia Materials</jtitle><stitle>NPG Asia Mater</stitle><date>2019-06-07</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><artnum>26</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed. With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-019-0125-y</doi><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia Materials, 2019-06, Vol.11 (1), Article 26
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2499400677
source SpringerOpen; Nature Free; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 639/166/987
639/301/299/2736
639/766/25
639/925/927/1007
Biomaterials
Chemistry and Materials Science
Electrical properties
Energy
Energy conversion efficiency
Energy harvesting
Energy Systems
Energy utilization
Heat
MATERIALS SCIENCE
Optical and Electronic Materials
Perspective
Photovoltaic cells
Structural Materials
Surface and Interface Science
Thermodynamic cycles
Thin Films
Waste heat
title New approach to waste-heat energy harvesting: pyroelectric energy conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approach%20to%20waste-heat%20energy%20harvesting:%20pyroelectric%20energy%20conversion&rft.jtitle=NPG%20Asia%20Materials&rft.au=Pandya,%20Shishir&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-06-07&rft.volume=11&rft.issue=1&rft.artnum=26&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-019-0125-y&rft_dat=%3Cproquest_osti_%3E2499400677%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236155751&rft_id=info:pmid/&rfr_iscdi=true