New approach to waste-heat energy harvesting: pyroelectric energy conversion
Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspectiv...
Gespeichert in:
Veröffentlicht in: | NPG Asia Materials 2019-06, Vol.11 (1), Article 26 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | NPG Asia Materials |
container_volume | 11 |
creator | Pandya, Shishir Velarde, Gabriel Zhang, Lei Wilbur, Joshua D. Smith, Andrew Hanrahan, Brendan Dames, Chris Martin, Lane W. |
description | Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed.
With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power. |
doi_str_mv | 10.1038/s41427-019-0125-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2499400677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499400677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EElXpB7CLYB3wOHacsEMVL6mCDawtxx03qUoc7LRV_h5X4bGCxWhGmnNHd3QJOQd6BTQrrgMHzmRKoYzFRDockQkUBU85FfL4Z-blKZmFsKaUQp7zQvAJWTzjPtFd5502ddK7ZK9Dj2mNuk-wRb8aklr7HYa-aVc3STd4hxs0vW_M9964doc-NK49IydWbwLOvvqUvN3fvc4f08XLw9P8dpEakRV9ygrDlozzwgoNaMqlrEqWAatESQ0UVGpLwTJhhYGlBZ0hh4rJDCsU1qDOpuRivOuiLRVM06Opo402GlMgOOMsj9DlCMXfPrbxAbV2W99GX4rxsuSU5lL-S7EsByGkgEjBSBnvQvBoVeebd-0HBVQdIlBjBCpGoA4RqCFq2KgJkW1X6H8v_y36BFj2iNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236155751</pqid></control><display><type>article</type><title>New approach to waste-heat energy harvesting: pyroelectric energy conversion</title><source>SpringerOpen</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Pandya, Shishir ; Velarde, Gabriel ; Zhang, Lei ; Wilbur, Joshua D. ; Smith, Andrew ; Hanrahan, Brendan ; Dames, Chris ; Martin, Lane W.</creator><creatorcontrib>Pandya, Shishir ; Velarde, Gabriel ; Zhang, Lei ; Wilbur, Joshua D. ; Smith, Andrew ; Hanrahan, Brendan ; Dames, Chris ; Martin, Lane W. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed.
With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-019-0125-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/299/2736 ; 639/766/25 ; 639/925/927/1007 ; Biomaterials ; Chemistry and Materials Science ; Electrical properties ; Energy ; Energy conversion efficiency ; Energy harvesting ; Energy Systems ; Energy utilization ; Heat ; MATERIALS SCIENCE ; Optical and Electronic Materials ; Perspective ; Photovoltaic cells ; Structural Materials ; Surface and Interface Science ; Thermodynamic cycles ; Thin Films ; Waste heat</subject><ispartof>NPG Asia Materials, 2019-06, Vol.11 (1), Article 26</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</citedby><cites>FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</cites><orcidid>0000-0003-1889-2513 ; 0000000318892513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-019-0125-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-019-0125-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,865,886,27929,27930,41125,42194,51581</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1542426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandya, Shishir</creatorcontrib><creatorcontrib>Velarde, Gabriel</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wilbur, Joshua D.</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Hanrahan, Brendan</creatorcontrib><creatorcontrib>Dames, Chris</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>New approach to waste-heat energy harvesting: pyroelectric energy conversion</title><title>NPG Asia Materials</title><addtitle>NPG Asia Mater</addtitle><description>Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed.
With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power.</description><subject>639/166/987</subject><subject>639/301/299/2736</subject><subject>639/766/25</subject><subject>639/925/927/1007</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Energy Systems</subject><subject>Energy utilization</subject><subject>Heat</subject><subject>MATERIALS SCIENCE</subject><subject>Optical and Electronic Materials</subject><subject>Perspective</subject><subject>Photovoltaic cells</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thermodynamic cycles</subject><subject>Thin Films</subject><subject>Waste heat</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kctOwzAQRS0EElXpB7CLYB3wOHacsEMVL6mCDawtxx03qUoc7LRV_h5X4bGCxWhGmnNHd3QJOQd6BTQrrgMHzmRKoYzFRDockQkUBU85FfL4Z-blKZmFsKaUQp7zQvAJWTzjPtFd5502ddK7ZK9Dj2mNuk-wRb8aklr7HYa-aVc3STd4hxs0vW_M9964doc-NK49IydWbwLOvvqUvN3fvc4f08XLw9P8dpEakRV9ygrDlozzwgoNaMqlrEqWAatESQ0UVGpLwTJhhYGlBZ0hh4rJDCsU1qDOpuRivOuiLRVM06Opo402GlMgOOMsj9DlCMXfPrbxAbV2W99GX4rxsuSU5lL-S7EsByGkgEjBSBnvQvBoVeebd-0HBVQdIlBjBCpGoA4RqCFq2KgJkW1X6H8v_y36BFj2iNw</recordid><startdate>20190607</startdate><enddate>20190607</enddate><creator>Pandya, Shishir</creator><creator>Velarde, Gabriel</creator><creator>Zhang, Lei</creator><creator>Wilbur, Joshua D.</creator><creator>Smith, Andrew</creator><creator>Hanrahan, Brendan</creator><creator>Dames, Chris</creator><creator>Martin, Lane W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group Asia</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid></search><sort><creationdate>20190607</creationdate><title>New approach to waste-heat energy harvesting: pyroelectric energy conversion</title><author>Pandya, Shishir ; Velarde, Gabriel ; Zhang, Lei ; Wilbur, Joshua D. ; Smith, Andrew ; Hanrahan, Brendan ; Dames, Chris ; Martin, Lane W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-28c2d2448f5a1ec9d7b92312b590c1807af01f25f5c1df1a3e41b273ebe5fcea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/166/987</topic><topic>639/301/299/2736</topic><topic>639/766/25</topic><topic>639/925/927/1007</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Energy Systems</topic><topic>Energy utilization</topic><topic>Heat</topic><topic>MATERIALS SCIENCE</topic><topic>Optical and Electronic Materials</topic><topic>Perspective</topic><topic>Photovoltaic cells</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thermodynamic cycles</topic><topic>Thin Films</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandya, Shishir</creatorcontrib><creatorcontrib>Velarde, Gabriel</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wilbur, Joshua D.</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Hanrahan, Brendan</creatorcontrib><creatorcontrib>Dames, Chris</creatorcontrib><creatorcontrib>Martin, Lane W.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>NPG Asia Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandya, Shishir</au><au>Velarde, Gabriel</au><au>Zhang, Lei</au><au>Wilbur, Joshua D.</au><au>Smith, Andrew</au><au>Hanrahan, Brendan</au><au>Dames, Chris</au><au>Martin, Lane W.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approach to waste-heat energy harvesting: pyroelectric energy conversion</atitle><jtitle>NPG Asia Materials</jtitle><stitle>NPG Asia Mater</stitle><date>2019-06-07</date><risdate>2019</risdate><volume>11</volume><issue>1</issue><artnum>26</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed.
With two-thirds of the primary energy produced every year rejected as heat, the need for techniques that harvest low-grade waste heat with higher fractions of Carnot efficiency is clear. This article develops a perspective on pyroelectric energy conversion (PEC), that leverages the intrinsic coupling between electrical polarization and temperature in pyroelectric materials where a change in temperature begets a flow of electrical charge. This article will shed light on what thermo-electrical properties are crucial for PEC and the routes to enhance them. Subsequent discussion will cover thermodynamic cycles and device design rules to extract maximum work and power.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41427-019-0125-y</doi><orcidid>https://orcid.org/0000-0003-1889-2513</orcidid><orcidid>https://orcid.org/0000000318892513</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1884-4049 |
ispartof | NPG Asia Materials, 2019-06, Vol.11 (1), Article 26 |
issn | 1884-4049 1884-4057 |
language | eng |
recordid | cdi_proquest_journals_2499400677 |
source | SpringerOpen; Nature Free; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | 639/166/987 639/301/299/2736 639/766/25 639/925/927/1007 Biomaterials Chemistry and Materials Science Electrical properties Energy Energy conversion efficiency Energy harvesting Energy Systems Energy utilization Heat MATERIALS SCIENCE Optical and Electronic Materials Perspective Photovoltaic cells Structural Materials Surface and Interface Science Thermodynamic cycles Thin Films Waste heat |
title | New approach to waste-heat energy harvesting: pyroelectric energy conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approach%20to%20waste-heat%20energy%20harvesting:%20pyroelectric%20energy%20conversion&rft.jtitle=NPG%20Asia%20Materials&rft.au=Pandya,%20Shishir&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-06-07&rft.volume=11&rft.issue=1&rft.artnum=26&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-019-0125-y&rft_dat=%3Cproquest_osti_%3E2499400677%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236155751&rft_id=info:pmid/&rfr_iscdi=true |