Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure

Thoroughly understanding the mechanism for the room temperature ferromagnetic performance (RTFM) in pristine TiO2 is crucial to the development of spintronic devices, and yet it is still under debated. To address this issue, pristine TiO2 nanoparticles were synthetized by a simple sol-gel technology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-04, Vol.860, p.157913, Article 157913
Hauptverfasser: Zhang, Hong, Huang, Wenqiang, Lin, Rui, Wang, Yuzhu, Long, Bo, Hu, Qichang, Wu, Yibing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 157913
container_title Journal of alloys and compounds
container_volume 860
creator Zhang, Hong
Huang, Wenqiang
Lin, Rui
Wang, Yuzhu
Long, Bo
Hu, Qichang
Wu, Yibing
description Thoroughly understanding the mechanism for the room temperature ferromagnetic performance (RTFM) in pristine TiO2 is crucial to the development of spintronic devices, and yet it is still under debated. To address this issue, pristine TiO2 nanoparticles were synthetized by a simple sol-gel technology and vacuum calcined under different air pressure in this work, and then the mechanism for the RTFM of the samples was systematically studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman scattering spectroscopy, electron paramagnetic resonance (EPR) and vibrating sample magnetometer (VSM), respectively. It is revealed from the results that surface oxygen vacancies were introduced into the TiO2 lattice via vacuum calcining, and the surface oxygen vacancies concentration increases with the decrease of calcining air pressure. The sample calcined at atmospheric pressure (1.01 × 105 Pa) is found to be diamagnetic, while the rest samples (those calcined under the pressure lower than 1.01 × 105 Pa) exhibit obvious ferromagnetism at room temperature. Moreover, the RTFM in these ferromagnetic pristine TiO2 nanoparticles tuned by the calcining air pressure shows similar variation trend to that of surface oxygen vacancies concentration. Surface oxygen vacancies are suggested to play the decisive role in inducing the RTFM of pristine TiO2 nanoparticles. Surface oxygen. vacancies in TiO2 lattice are prone to capture electrons to form singly ionized oxygen vacancies, which trigger ferromagnetic exchange coupling interactions, thus give rise to RTFM in the pristine TiO2 nanoparticles. [Display omitted] •Surface oxygen vacancy content in pristine TiO2 is tuned by calcining air pressure.•The variation trend of Ms agrees well with that of surface oxygen vacancy content.•The coupling interactions between singly ionized oxygen vacancies induces the RTFM.•The mechanism for the RTFM in pristine TiO2 is clarified.
doi_str_mv 10.1016/j.jallcom.2020.157913
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499394288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820342778</els_id><sourcerecordid>2499394288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b225724430bcd6fe04be9bbe56ecc5c8506e356f70c211a5ee24b4e0cff194503</originalsourceid><addsrcrecordid>eNqFUV2LFDEQDKLgevoThIDPs-ZzdvIkcugpHBwcd88h09MzZJhJ1iSzuP4b_6lZ9t59aqjqqqK7CPnI2Z4z3n6e97NbFojrXjBRMX0wXL4iO94dZKPa1rwmO2aEbjrZdW_Ju5xnxhg3ku_I38cYV1pwPWJyZUtIR0wprm4KWHxeqQ_0mHwuPiB98g-CBhfi0aXiYcFMS_LThAkH2p9p9mFaztTH4P9UJG9pdIA0_j5PGOjJgQtQ6TBsUOmTdxTcAj5U2SVn8GMNx1Co86mmYq4O-J68Gd2S8cPLvCHP37893f5o7h_uft5-vW9AMVmaXgh9EEpJ1sPQjshUj6bvUbcIoKHTrEWp2_HAQHDuNKJQvUIG48iN0kzekE9X32OKvzbMxc5xS6FGWqGMkUaJrqtb-roFKeaccLT1O6tLZ8uZvbRhZ_vShr20Ya9tVN2Xqw7rCSePyWbwGOoffEIodoj-Pw7_AA8emoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499394288</pqid></control><display><type>article</type><title>Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Hong ; Huang, Wenqiang ; Lin, Rui ; Wang, Yuzhu ; Long, Bo ; Hu, Qichang ; Wu, Yibing</creator><creatorcontrib>Zhang, Hong ; Huang, Wenqiang ; Lin, Rui ; Wang, Yuzhu ; Long, Bo ; Hu, Qichang ; Wu, Yibing</creatorcontrib><description>Thoroughly understanding the mechanism for the room temperature ferromagnetic performance (RTFM) in pristine TiO2 is crucial to the development of spintronic devices, and yet it is still under debated. To address this issue, pristine TiO2 nanoparticles were synthetized by a simple sol-gel technology and vacuum calcined under different air pressure in this work, and then the mechanism for the RTFM of the samples was systematically studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman scattering spectroscopy, electron paramagnetic resonance (EPR) and vibrating sample magnetometer (VSM), respectively. It is revealed from the results that surface oxygen vacancies were introduced into the TiO2 lattice via vacuum calcining, and the surface oxygen vacancies concentration increases with the decrease of calcining air pressure. The sample calcined at atmospheric pressure (1.01 × 105 Pa) is found to be diamagnetic, while the rest samples (those calcined under the pressure lower than 1.01 × 105 Pa) exhibit obvious ferromagnetism at room temperature. Moreover, the RTFM in these ferromagnetic pristine TiO2 nanoparticles tuned by the calcining air pressure shows similar variation trend to that of surface oxygen vacancies concentration. Surface oxygen vacancies are suggested to play the decisive role in inducing the RTFM of pristine TiO2 nanoparticles. Surface oxygen. vacancies in TiO2 lattice are prone to capture electrons to form singly ionized oxygen vacancies, which trigger ferromagnetic exchange coupling interactions, thus give rise to RTFM in the pristine TiO2 nanoparticles. [Display omitted] •Surface oxygen vacancy content in pristine TiO2 is tuned by calcining air pressure.•The variation trend of Ms agrees well with that of surface oxygen vacancy content.•The coupling interactions between singly ionized oxygen vacancies induces the RTFM.•The mechanism for the RTFM in pristine TiO2 is clarified.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.157913</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Diamagnetism ; Different calcining air pressure ; Electron paramagnetic resonance ; Ferromagnetism ; Lattice vacancies ; Nanoparticles ; Oxygen ; Pristine TiO2 nanoparticles ; Raman spectra ; Resonance scattering ; Roasting ; Room temperature ; Room temperature ferromagnetism ; Sol-gel processes ; Surface oxygen vacancies ; Titanium dioxide</subject><ispartof>Journal of alloys and compounds, 2021-04, Vol.860, p.157913, Article 157913</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b225724430bcd6fe04be9bbe56ecc5c8506e356f70c211a5ee24b4e0cff194503</citedby><cites>FETCH-LOGICAL-c403t-b225724430bcd6fe04be9bbe56ecc5c8506e356f70c211a5ee24b4e0cff194503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.157913$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Huang, Wenqiang</creatorcontrib><creatorcontrib>Lin, Rui</creatorcontrib><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Hu, Qichang</creatorcontrib><creatorcontrib>Wu, Yibing</creatorcontrib><title>Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure</title><title>Journal of alloys and compounds</title><description>Thoroughly understanding the mechanism for the room temperature ferromagnetic performance (RTFM) in pristine TiO2 is crucial to the development of spintronic devices, and yet it is still under debated. To address this issue, pristine TiO2 nanoparticles were synthetized by a simple sol-gel technology and vacuum calcined under different air pressure in this work, and then the mechanism for the RTFM of the samples was systematically studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman scattering spectroscopy, electron paramagnetic resonance (EPR) and vibrating sample magnetometer (VSM), respectively. It is revealed from the results that surface oxygen vacancies were introduced into the TiO2 lattice via vacuum calcining, and the surface oxygen vacancies concentration increases with the decrease of calcining air pressure. The sample calcined at atmospheric pressure (1.01 × 105 Pa) is found to be diamagnetic, while the rest samples (those calcined under the pressure lower than 1.01 × 105 Pa) exhibit obvious ferromagnetism at room temperature. Moreover, the RTFM in these ferromagnetic pristine TiO2 nanoparticles tuned by the calcining air pressure shows similar variation trend to that of surface oxygen vacancies concentration. Surface oxygen vacancies are suggested to play the decisive role in inducing the RTFM of pristine TiO2 nanoparticles. Surface oxygen. vacancies in TiO2 lattice are prone to capture electrons to form singly ionized oxygen vacancies, which trigger ferromagnetic exchange coupling interactions, thus give rise to RTFM in the pristine TiO2 nanoparticles. [Display omitted] •Surface oxygen vacancy content in pristine TiO2 is tuned by calcining air pressure.•The variation trend of Ms agrees well with that of surface oxygen vacancy content.•The coupling interactions between singly ionized oxygen vacancies induces the RTFM.•The mechanism for the RTFM in pristine TiO2 is clarified.</description><subject>Diamagnetism</subject><subject>Different calcining air pressure</subject><subject>Electron paramagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Lattice vacancies</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Pristine TiO2 nanoparticles</subject><subject>Raman spectra</subject><subject>Resonance scattering</subject><subject>Roasting</subject><subject>Room temperature</subject><subject>Room temperature ferromagnetism</subject><subject>Sol-gel processes</subject><subject>Surface oxygen vacancies</subject><subject>Titanium dioxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUV2LFDEQDKLgevoThIDPs-ZzdvIkcugpHBwcd88h09MzZJhJ1iSzuP4b_6lZ9t59aqjqqqK7CPnI2Z4z3n6e97NbFojrXjBRMX0wXL4iO94dZKPa1rwmO2aEbjrZdW_Ju5xnxhg3ku_I38cYV1pwPWJyZUtIR0wprm4KWHxeqQ_0mHwuPiB98g-CBhfi0aXiYcFMS_LThAkH2p9p9mFaztTH4P9UJG9pdIA0_j5PGOjJgQtQ6TBsUOmTdxTcAj5U2SVn8GMNx1Co86mmYq4O-J68Gd2S8cPLvCHP37893f5o7h_uft5-vW9AMVmaXgh9EEpJ1sPQjshUj6bvUbcIoKHTrEWp2_HAQHDuNKJQvUIG48iN0kzekE9X32OKvzbMxc5xS6FGWqGMkUaJrqtb-roFKeaccLT1O6tLZ8uZvbRhZ_vShr20Ya9tVN2Xqw7rCSePyWbwGOoffEIodoj-Pw7_AA8emoY</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Zhang, Hong</creator><creator>Huang, Wenqiang</creator><creator>Lin, Rui</creator><creator>Wang, Yuzhu</creator><creator>Long, Bo</creator><creator>Hu, Qichang</creator><creator>Wu, Yibing</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210415</creationdate><title>Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure</title><author>Zhang, Hong ; Huang, Wenqiang ; Lin, Rui ; Wang, Yuzhu ; Long, Bo ; Hu, Qichang ; Wu, Yibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b225724430bcd6fe04be9bbe56ecc5c8506e356f70c211a5ee24b4e0cff194503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diamagnetism</topic><topic>Different calcining air pressure</topic><topic>Electron paramagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Lattice vacancies</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Pristine TiO2 nanoparticles</topic><topic>Raman spectra</topic><topic>Resonance scattering</topic><topic>Roasting</topic><topic>Room temperature</topic><topic>Room temperature ferromagnetism</topic><topic>Sol-gel processes</topic><topic>Surface oxygen vacancies</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Huang, Wenqiang</creatorcontrib><creatorcontrib>Lin, Rui</creatorcontrib><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Long, Bo</creatorcontrib><creatorcontrib>Hu, Qichang</creatorcontrib><creatorcontrib>Wu, Yibing</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hong</au><au>Huang, Wenqiang</au><au>Lin, Rui</au><au>Wang, Yuzhu</au><au>Long, Bo</au><au>Hu, Qichang</au><au>Wu, Yibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>860</volume><spage>157913</spage><pages>157913-</pages><artnum>157913</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Thoroughly understanding the mechanism for the room temperature ferromagnetic performance (RTFM) in pristine TiO2 is crucial to the development of spintronic devices, and yet it is still under debated. To address this issue, pristine TiO2 nanoparticles were synthetized by a simple sol-gel technology and vacuum calcined under different air pressure in this work, and then the mechanism for the RTFM of the samples was systematically studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman scattering spectroscopy, electron paramagnetic resonance (EPR) and vibrating sample magnetometer (VSM), respectively. It is revealed from the results that surface oxygen vacancies were introduced into the TiO2 lattice via vacuum calcining, and the surface oxygen vacancies concentration increases with the decrease of calcining air pressure. The sample calcined at atmospheric pressure (1.01 × 105 Pa) is found to be diamagnetic, while the rest samples (those calcined under the pressure lower than 1.01 × 105 Pa) exhibit obvious ferromagnetism at room temperature. Moreover, the RTFM in these ferromagnetic pristine TiO2 nanoparticles tuned by the calcining air pressure shows similar variation trend to that of surface oxygen vacancies concentration. Surface oxygen vacancies are suggested to play the decisive role in inducing the RTFM of pristine TiO2 nanoparticles. Surface oxygen. vacancies in TiO2 lattice are prone to capture electrons to form singly ionized oxygen vacancies, which trigger ferromagnetic exchange coupling interactions, thus give rise to RTFM in the pristine TiO2 nanoparticles. [Display omitted] •Surface oxygen vacancy content in pristine TiO2 is tuned by calcining air pressure.•The variation trend of Ms agrees well with that of surface oxygen vacancy content.•The coupling interactions between singly ionized oxygen vacancies induces the RTFM.•The mechanism for the RTFM in pristine TiO2 is clarified.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.157913</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-04, Vol.860, p.157913, Article 157913
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2499394288
source Access via ScienceDirect (Elsevier)
subjects Diamagnetism
Different calcining air pressure
Electron paramagnetic resonance
Ferromagnetism
Lattice vacancies
Nanoparticles
Oxygen
Pristine TiO2 nanoparticles
Raman spectra
Resonance scattering
Roasting
Room temperature
Room temperature ferromagnetism
Sol-gel processes
Surface oxygen vacancies
Titanium dioxide
title Room temperature ferromagnetism in pristine TiO2 nanoparticles triggered by singly ionized surface oxygen vacancy induced via calcining in different air pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20temperature%20ferromagnetism%20in%20pristine%20TiO2%20nanoparticles%20triggered%20by%20singly%20ionized%20surface%20oxygen%20vacancy%20induced%20via%20calcining%20in%20different%20air%20pressure&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zhang,%20Hong&rft.date=2021-04-15&rft.volume=860&rft.spage=157913&rft.pages=157913-&rft.artnum=157913&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.157913&rft_dat=%3Cproquest_cross%3E2499394288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499394288&rft_id=info:pmid/&rft_els_id=S0925838820342778&rfr_iscdi=true