Structural and Raman study of the thermoelectric solid solution Sr1.9La0.1Nb2O7

Ceramic powder samples of the perovskite‐slab‐layered polycrystalline Sr1.9La0.1Nb2O7 (SLNO1) thermoelectric solid solution were prepared via solid‐state reaction. The Raman effect was studied as a function of temperature between 27°C and 400°C (at ambient pressure) and pressures up to 11.6 GPa (at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2021-03, Vol.52 (3), p.737-749
Hauptverfasser: Ojeda‐Galván, Hiram Joazet, Rodríguez‐Aranda, Ma. del Carmen, Rodríguez, Ángel Gabriel, Alanis, Javier, Íñiguez, Jorge, Mendoza, María Eugenia, Navarro‐Contreras, Hugo Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 749
container_issue 3
container_start_page 737
container_title Journal of Raman spectroscopy
container_volume 52
creator Ojeda‐Galván, Hiram Joazet
Rodríguez‐Aranda, Ma. del Carmen
Rodríguez, Ángel Gabriel
Alanis, Javier
Íñiguez, Jorge
Mendoza, María Eugenia
Navarro‐Contreras, Hugo Ricardo
description Ceramic powder samples of the perovskite‐slab‐layered polycrystalline Sr1.9La0.1Nb2O7 (SLNO1) thermoelectric solid solution were prepared via solid‐state reaction. The Raman effect was studied as a function of temperature between 27°C and 400°C (at ambient pressure) and pressures up to 11.6 GPa (at room temperature). The atomic disorder introduced by the La atoms produced phonon lines that were broader than those of Sr2Nb2O7 (SNO). We detected a temperature‐induced phase transition at Ti−c = 247 ± 5°C (ambient pressure) and a pressure‐induced phase transition at Pi−c = 6.74 ± 0.25 GPa (room temperature), which correspond to the reported SNO incommensurate‐to‐commensurate phase transitions at 215°C (atmospheric pressure) and Pi−c = 6.54 ± 0.25 GPa (27°C), respectively. In this paper, the phenomenological and structural differences between SNO and SLNO1 are discussed based on density functional theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells. Changes in the incommensurate‐to‐commensurate Cmc21 phase transition temperature (Ti−c, at ambient pressure) and pressure (Pi−c, at ambient temperature) originated from the ionic substitution of Sr ions by La ions in Sr2Nb2O7 (SNO) to form Sr2−xLaxNb2O7 (x = 0.1, SLNO1) were studied by Raman spectroscopy. The behavior with temperature and pressure of the phonon wavenumber reveals increments of 32 °C in the Ti−c and 0.2 GPa in the Pi−c phase transitions. Phenomenological and structural differences between SNO and SLNO1 are discussed using Density Functional Theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells.
doi_str_mv 10.1002/jrs.6032
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2499211304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499211304</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2922-f91c01fcd8ff3d91bb0f98c80af7724c37f15a3d50cd1a346eaab26f51ab48973</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOKfgTwh43fm-Sdo0lzL8ZDjY9Dqk-dCOrp1Ji-zf2zIvzjk3h3PgIeQWYYEA7H4X06IAzs7IDEHJTOR5fk5mwKXMQJTFJblKaQcAShU4I-ttHwfbD9E01LSObszetDT1gzvSLtD-20-K-8433vaxtjR1Te0mH_q6a-k24kKtzPj-XrG1vCYXwTTJ3_znnHw-PX4sX7LV-vl1-bDKvphiLAsKLWCwrgyBO4VVBUGVtgQTpGTCchkwN9zlYB0aLgpvTMWKkKOpRKkkn5O70-4hdj-DT73edUNsx0vNhFIMkYMYW9mp9Vs3_qgPsd6beNQIemKlR1Z6YqXfNtsp-R-tUV0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499211304</pqid></control><display><type>article</type><title>Structural and Raman study of the thermoelectric solid solution Sr1.9La0.1Nb2O7</title><source>Wiley Online Library All Journals</source><creator>Ojeda‐Galván, Hiram Joazet ; Rodríguez‐Aranda, Ma. del Carmen ; Rodríguez, Ángel Gabriel ; Alanis, Javier ; Íñiguez, Jorge ; Mendoza, María Eugenia ; Navarro‐Contreras, Hugo Ricardo</creator><creatorcontrib>Ojeda‐Galván, Hiram Joazet ; Rodríguez‐Aranda, Ma. del Carmen ; Rodríguez, Ángel Gabriel ; Alanis, Javier ; Íñiguez, Jorge ; Mendoza, María Eugenia ; Navarro‐Contreras, Hugo Ricardo</creatorcontrib><description>Ceramic powder samples of the perovskite‐slab‐layered polycrystalline Sr1.9La0.1Nb2O7 (SLNO1) thermoelectric solid solution were prepared via solid‐state reaction. The Raman effect was studied as a function of temperature between 27°C and 400°C (at ambient pressure) and pressures up to 11.6 GPa (at room temperature). The atomic disorder introduced by the La atoms produced phonon lines that were broader than those of Sr2Nb2O7 (SNO). We detected a temperature‐induced phase transition at Ti−c = 247 ± 5°C (ambient pressure) and a pressure‐induced phase transition at Pi−c = 6.74 ± 0.25 GPa (room temperature), which correspond to the reported SNO incommensurate‐to‐commensurate phase transitions at 215°C (atmospheric pressure) and Pi−c = 6.54 ± 0.25 GPa (27°C), respectively. In this paper, the phenomenological and structural differences between SNO and SLNO1 are discussed based on density functional theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells. Changes in the incommensurate‐to‐commensurate Cmc21 phase transition temperature (Ti−c, at ambient pressure) and pressure (Pi−c, at ambient temperature) originated from the ionic substitution of Sr ions by La ions in Sr2Nb2O7 (SNO) to form Sr2−xLaxNb2O7 (x = 0.1, SLNO1) were studied by Raman spectroscopy. The behavior with temperature and pressure of the phonon wavenumber reveals increments of 32 °C in the Ti−c and 0.2 GPa in the Pi−c phase transitions. Phenomenological and structural differences between SNO and SLNO1 are discussed using Density Functional Theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.6032</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Ceramic powders ; Density functional theory ; DFT ; Grüneisen parameters ; high pressure ; layered perovskite ; Perovskites ; phase transition ; Phase transitions ; Pressure ; Room temperature ; Solid solutions ; Thermoelectricity ; Thunderstorms</subject><ispartof>Journal of Raman spectroscopy, 2021-03, Vol.52 (3), p.737-749</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8457-7584 ; 0000-0003-0632-2265 ; 0000-0002-0565-4236 ; 0000-0001-6435-3604 ; 0000-0002-1947-7875 ; 0000-0001-8521-294X ; 0000-0003-0333-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.6032$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.6032$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Ojeda‐Galván, Hiram Joazet</creatorcontrib><creatorcontrib>Rodríguez‐Aranda, Ma. del Carmen</creatorcontrib><creatorcontrib>Rodríguez, Ángel Gabriel</creatorcontrib><creatorcontrib>Alanis, Javier</creatorcontrib><creatorcontrib>Íñiguez, Jorge</creatorcontrib><creatorcontrib>Mendoza, María Eugenia</creatorcontrib><creatorcontrib>Navarro‐Contreras, Hugo Ricardo</creatorcontrib><title>Structural and Raman study of the thermoelectric solid solution Sr1.9La0.1Nb2O7</title><title>Journal of Raman spectroscopy</title><description>Ceramic powder samples of the perovskite‐slab‐layered polycrystalline Sr1.9La0.1Nb2O7 (SLNO1) thermoelectric solid solution were prepared via solid‐state reaction. The Raman effect was studied as a function of temperature between 27°C and 400°C (at ambient pressure) and pressures up to 11.6 GPa (at room temperature). The atomic disorder introduced by the La atoms produced phonon lines that were broader than those of Sr2Nb2O7 (SNO). We detected a temperature‐induced phase transition at Ti−c = 247 ± 5°C (ambient pressure) and a pressure‐induced phase transition at Pi−c = 6.74 ± 0.25 GPa (room temperature), which correspond to the reported SNO incommensurate‐to‐commensurate phase transitions at 215°C (atmospheric pressure) and Pi−c = 6.54 ± 0.25 GPa (27°C), respectively. In this paper, the phenomenological and structural differences between SNO and SLNO1 are discussed based on density functional theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells. Changes in the incommensurate‐to‐commensurate Cmc21 phase transition temperature (Ti−c, at ambient pressure) and pressure (Pi−c, at ambient temperature) originated from the ionic substitution of Sr ions by La ions in Sr2Nb2O7 (SNO) to form Sr2−xLaxNb2O7 (x = 0.1, SLNO1) were studied by Raman spectroscopy. The behavior with temperature and pressure of the phonon wavenumber reveals increments of 32 °C in the Ti−c and 0.2 GPa in the Pi−c phase transitions. Phenomenological and structural differences between SNO and SLNO1 are discussed using Density Functional Theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells.</description><subject>Ceramic powders</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Grüneisen parameters</subject><subject>high pressure</subject><subject>layered perovskite</subject><subject>Perovskites</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Pressure</subject><subject>Room temperature</subject><subject>Solid solutions</subject><subject>Thermoelectricity</subject><subject>Thunderstorms</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAYhYMoOKfgTwh43fm-Sdo0lzL8ZDjY9Dqk-dCOrp1Ji-zf2zIvzjk3h3PgIeQWYYEA7H4X06IAzs7IDEHJTOR5fk5mwKXMQJTFJblKaQcAShU4I-ttHwfbD9E01LSObszetDT1gzvSLtD-20-K-8433vaxtjR1Te0mH_q6a-k24kKtzPj-XrG1vCYXwTTJ3_znnHw-PX4sX7LV-vl1-bDKvphiLAsKLWCwrgyBO4VVBUGVtgQTpGTCchkwN9zlYB0aLgpvTMWKkKOpRKkkn5O70-4hdj-DT73edUNsx0vNhFIMkYMYW9mp9Vs3_qgPsd6beNQIemKlR1Z6YqXfNtsp-R-tUV0s</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Ojeda‐Galván, Hiram Joazet</creator><creator>Rodríguez‐Aranda, Ma. del Carmen</creator><creator>Rodríguez, Ángel Gabriel</creator><creator>Alanis, Javier</creator><creator>Íñiguez, Jorge</creator><creator>Mendoza, María Eugenia</creator><creator>Navarro‐Contreras, Hugo Ricardo</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8457-7584</orcidid><orcidid>https://orcid.org/0000-0003-0632-2265</orcidid><orcidid>https://orcid.org/0000-0002-0565-4236</orcidid><orcidid>https://orcid.org/0000-0001-6435-3604</orcidid><orcidid>https://orcid.org/0000-0002-1947-7875</orcidid><orcidid>https://orcid.org/0000-0001-8521-294X</orcidid><orcidid>https://orcid.org/0000-0003-0333-0024</orcidid></search><sort><creationdate>202103</creationdate><title>Structural and Raman study of the thermoelectric solid solution Sr1.9La0.1Nb2O7</title><author>Ojeda‐Galván, Hiram Joazet ; Rodríguez‐Aranda, Ma. del Carmen ; Rodríguez, Ángel Gabriel ; Alanis, Javier ; Íñiguez, Jorge ; Mendoza, María Eugenia ; Navarro‐Contreras, Hugo Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2922-f91c01fcd8ff3d91bb0f98c80af7724c37f15a3d50cd1a346eaab26f51ab48973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ceramic powders</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Grüneisen parameters</topic><topic>high pressure</topic><topic>layered perovskite</topic><topic>Perovskites</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Pressure</topic><topic>Room temperature</topic><topic>Solid solutions</topic><topic>Thermoelectricity</topic><topic>Thunderstorms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ojeda‐Galván, Hiram Joazet</creatorcontrib><creatorcontrib>Rodríguez‐Aranda, Ma. del Carmen</creatorcontrib><creatorcontrib>Rodríguez, Ángel Gabriel</creatorcontrib><creatorcontrib>Alanis, Javier</creatorcontrib><creatorcontrib>Íñiguez, Jorge</creatorcontrib><creatorcontrib>Mendoza, María Eugenia</creatorcontrib><creatorcontrib>Navarro‐Contreras, Hugo Ricardo</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ojeda‐Galván, Hiram Joazet</au><au>Rodríguez‐Aranda, Ma. del Carmen</au><au>Rodríguez, Ángel Gabriel</au><au>Alanis, Javier</au><au>Íñiguez, Jorge</au><au>Mendoza, María Eugenia</au><au>Navarro‐Contreras, Hugo Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Raman study of the thermoelectric solid solution Sr1.9La0.1Nb2O7</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2021-03</date><risdate>2021</risdate><volume>52</volume><issue>3</issue><spage>737</spage><epage>749</epage><pages>737-749</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Ceramic powder samples of the perovskite‐slab‐layered polycrystalline Sr1.9La0.1Nb2O7 (SLNO1) thermoelectric solid solution were prepared via solid‐state reaction. The Raman effect was studied as a function of temperature between 27°C and 400°C (at ambient pressure) and pressures up to 11.6 GPa (at room temperature). The atomic disorder introduced by the La atoms produced phonon lines that were broader than those of Sr2Nb2O7 (SNO). We detected a temperature‐induced phase transition at Ti−c = 247 ± 5°C (ambient pressure) and a pressure‐induced phase transition at Pi−c = 6.74 ± 0.25 GPa (room temperature), which correspond to the reported SNO incommensurate‐to‐commensurate phase transitions at 215°C (atmospheric pressure) and Pi−c = 6.54 ± 0.25 GPa (27°C), respectively. In this paper, the phenomenological and structural differences between SNO and SLNO1 are discussed based on density functional theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells. Changes in the incommensurate‐to‐commensurate Cmc21 phase transition temperature (Ti−c, at ambient pressure) and pressure (Pi−c, at ambient temperature) originated from the ionic substitution of Sr ions by La ions in Sr2Nb2O7 (SNO) to form Sr2−xLaxNb2O7 (x = 0.1, SLNO1) were studied by Raman spectroscopy. The behavior with temperature and pressure of the phonon wavenumber reveals increments of 32 °C in the Ti−c and 0.2 GPa in the Pi−c phase transitions. Phenomenological and structural differences between SNO and SLNO1 are discussed using Density Functional Theory calculations of Sr2−xLaxNb2O7 (x = 0.0625 and 0.125) supercells.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.6032</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8457-7584</orcidid><orcidid>https://orcid.org/0000-0003-0632-2265</orcidid><orcidid>https://orcid.org/0000-0002-0565-4236</orcidid><orcidid>https://orcid.org/0000-0001-6435-3604</orcidid><orcidid>https://orcid.org/0000-0002-1947-7875</orcidid><orcidid>https://orcid.org/0000-0001-8521-294X</orcidid><orcidid>https://orcid.org/0000-0003-0333-0024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2021-03, Vol.52 (3), p.737-749
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_2499211304
source Wiley Online Library All Journals
subjects Ceramic powders
Density functional theory
DFT
Grüneisen parameters
high pressure
layered perovskite
Perovskites
phase transition
Phase transitions
Pressure
Room temperature
Solid solutions
Thermoelectricity
Thunderstorms
title Structural and Raman study of the thermoelectric solid solution Sr1.9La0.1Nb2O7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Raman%20study%20of%20the%20thermoelectric%20solid%20solution%20Sr1.9La0.1Nb2O7&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Ojeda%E2%80%90Galv%C3%A1n,%20Hiram%20Joazet&rft.date=2021-03&rft.volume=52&rft.issue=3&rft.spage=737&rft.epage=749&rft.pages=737-749&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.6032&rft_dat=%3Cproquest_wiley%3E2499211304%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499211304&rft_id=info:pmid/&rfr_iscdi=true