Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials
Microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials was obtained in situ by combining interfacial polymerization and suspension-like polymerization. Glycerin (GC) acts as a cross-linking agent to modify the shells. The morphologies, particle...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2021-02, Vol.143 (4), p.3023-3032 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3032 |
---|---|
container_issue | 4 |
container_start_page | 3023 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 143 |
creator | Qiu, Xiaolin Lu, Lixin Tang, Guoyi Song, Guolin |
description | Microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials was obtained in situ by combining interfacial polymerization and suspension-like polymerization. Glycerin (GC) acts as a cross-linking agent to modify the shells. The morphologies, particle size distributions, thermal storage properties, thermal stabilities and thermal reliabilities of microencapsulated phase change materials (MicroPCMs) were determined by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). The temperature regulation performance of the foam with MicroPCMs was investigated by an infrared thermal imager. DSC results showed that MicroPCMs with polyurea/butyl methacrylate (PU/BMA) possess an improved heat ability and thermal reliability compared to MicroPCMs with polyurea/methyl methacrylate (PU/MMA). The incorporation of GC to shell-forming composition led to an enhancement in thermal storage capacity of the MicroPCMs. The MicroPCMs with GC-modified PU/BMA hybrid shell has the highest PCMs content by as much as 82.6 mass%. The change in latent heat of MicroPCMs with GC-modified PU/BMA hybrid shell was very small of less than 4 mass% after 500 thermal cycles. The infrared thermography indicated that the PU foam incorporating the MicroPCMs with GC-modified PU/BMA hybrid shell has better temperature-regulated property. In conclusion, the MicroPCMs with PU/BMA hybrid shells, especially with GC-modified PU/BMA hybrid shell, possess a promising prospect applying in energy-conserving building materials and thermal control system of shipping packages. |
doi_str_mv | 10.1007/s10973-020-09354-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2499063838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654364967</galeid><sourcerecordid>A654364967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-9d24ff2a54f02e5f1d1b4bd426fb885f6857b519a4c36a598b5b60991feadb963</originalsourceid><addsrcrecordid>eNp9UcFu1TAQjCqQWh78ACdLnDiktR3bLz5WFZRKlUDQnq1Nsn5xlZcE2xHNd_DDbAkS6qXaw-7aM2vvTFG8F_xccL6_SILbfVVyyUtuK63K9aQ4E7quS2mleUV1RbURmp8Wb1J64Jxby8VZ8ftbxBki5DCNDMaO5R7jEQY2x2nGmAMmNnl2DG2ccGxhTssAGTv2RPI-jOxXyD2bp2FdIsIFtHEdQssiJrrr1yaGjqUehyExSGzuISFrexgPyHDEeFhZylMEao80NwYY0tvitaeE7_7lXXH_-dPd1Zfy9uv1zdXlbdkqaXNpO6m8l6CV5xK1F51oVNMpaXxT19qbWu8bLSyotjKgbd3oxtDawiN0jTXVrviwzaVdfy6YsnuYljjSk04qksdUNcWuON9QBxjQhdFPOUJL0SGpMo3oA51fGq0qo6zZE-HjMwJhMj7mAywpuZsf359j5YYleVOK6N0cwxHi6gR3T866zVlHzrq_zrqVSNVGSgQmIeP_f7_A-gMEW6pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499063838</pqid></control><display><type>article</type><title>Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Qiu, Xiaolin ; Lu, Lixin ; Tang, Guoyi ; Song, Guolin</creator><creatorcontrib>Qiu, Xiaolin ; Lu, Lixin ; Tang, Guoyi ; Song, Guolin</creatorcontrib><description>Microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials was obtained in situ by combining interfacial polymerization and suspension-like polymerization. Glycerin (GC) acts as a cross-linking agent to modify the shells. The morphologies, particle size distributions, thermal storage properties, thermal stabilities and thermal reliabilities of microencapsulated phase change materials (MicroPCMs) were determined by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). The temperature regulation performance of the foam with MicroPCMs was investigated by an infrared thermal imager. DSC results showed that MicroPCMs with polyurea/butyl methacrylate (PU/BMA) possess an improved heat ability and thermal reliability compared to MicroPCMs with polyurea/methyl methacrylate (PU/MMA). The incorporation of GC to shell-forming composition led to an enhancement in thermal storage capacity of the MicroPCMs. The MicroPCMs with GC-modified PU/BMA hybrid shell has the highest PCMs content by as much as 82.6 mass%. The change in latent heat of MicroPCMs with GC-modified PU/BMA hybrid shell was very small of less than 4 mass% after 500 thermal cycles. The infrared thermography indicated that the PU foam incorporating the MicroPCMs with GC-modified PU/BMA hybrid shell has better temperature-regulated property. In conclusion, the MicroPCMs with PU/BMA hybrid shells, especially with GC-modified PU/BMA hybrid shell, possess a promising prospect applying in energy-conserving building materials and thermal control system of shipping packages.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-09354-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acrylic resins ; Analysis ; Analytical Chemistry ; Building materials ; Calorimetry ; Chemistry ; Chemistry and Materials Science ; Construction materials ; Control systems ; Crosslinking ; Differential scanning calorimetry ; Energy management systems ; Energy storage ; Gravimetric analysis ; Infrared imaging ; Inorganic Chemistry ; Latent heat ; Measurement Science and Instrumentation ; Morphology ; Paraffins ; Phase change materials ; Physical Chemistry ; Polymer Sciences ; Polymerization ; Polymethyl methacrylate ; Polyols ; Polyureas ; Polyurethane foam ; Product development ; Storage capacity ; Thermal control systems ; Thermal energy ; Thermal properties ; Thermal storage ; Thermodynamic properties ; Thermography</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-02, Vol.143 (4), p.3023-3032</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-9d24ff2a54f02e5f1d1b4bd426fb885f6857b519a4c36a598b5b60991feadb963</citedby><cites>FETCH-LOGICAL-c429t-9d24ff2a54f02e5f1d1b4bd426fb885f6857b519a4c36a598b5b60991feadb963</cites><orcidid>0000-0002-2091-4489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-09354-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-09354-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Qiu, Xiaolin</creatorcontrib><creatorcontrib>Lu, Lixin</creatorcontrib><creatorcontrib>Tang, Guoyi</creatorcontrib><creatorcontrib>Song, Guolin</creatorcontrib><title>Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials was obtained in situ by combining interfacial polymerization and suspension-like polymerization. Glycerin (GC) acts as a cross-linking agent to modify the shells. The morphologies, particle size distributions, thermal storage properties, thermal stabilities and thermal reliabilities of microencapsulated phase change materials (MicroPCMs) were determined by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). The temperature regulation performance of the foam with MicroPCMs was investigated by an infrared thermal imager. DSC results showed that MicroPCMs with polyurea/butyl methacrylate (PU/BMA) possess an improved heat ability and thermal reliability compared to MicroPCMs with polyurea/methyl methacrylate (PU/MMA). The incorporation of GC to shell-forming composition led to an enhancement in thermal storage capacity of the MicroPCMs. The MicroPCMs with GC-modified PU/BMA hybrid shell has the highest PCMs content by as much as 82.6 mass%. The change in latent heat of MicroPCMs with GC-modified PU/BMA hybrid shell was very small of less than 4 mass% after 500 thermal cycles. The infrared thermography indicated that the PU foam incorporating the MicroPCMs with GC-modified PU/BMA hybrid shell has better temperature-regulated property. In conclusion, the MicroPCMs with PU/BMA hybrid shells, especially with GC-modified PU/BMA hybrid shell, possess a promising prospect applying in energy-conserving building materials and thermal control system of shipping packages.</description><subject>Acrylic resins</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Building materials</subject><subject>Calorimetry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Construction materials</subject><subject>Control systems</subject><subject>Crosslinking</subject><subject>Differential scanning calorimetry</subject><subject>Energy management systems</subject><subject>Energy storage</subject><subject>Gravimetric analysis</subject><subject>Infrared imaging</subject><subject>Inorganic Chemistry</subject><subject>Latent heat</subject><subject>Measurement Science and Instrumentation</subject><subject>Morphology</subject><subject>Paraffins</subject><subject>Phase change materials</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polymethyl methacrylate</subject><subject>Polyols</subject><subject>Polyureas</subject><subject>Polyurethane foam</subject><subject>Product development</subject><subject>Storage capacity</subject><subject>Thermal control systems</subject><subject>Thermal energy</subject><subject>Thermal properties</subject><subject>Thermal storage</subject><subject>Thermodynamic properties</subject><subject>Thermography</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1TAQjCqQWh78ACdLnDiktR3bLz5WFZRKlUDQnq1Nsn5xlZcE2xHNd_DDbAkS6qXaw-7aM2vvTFG8F_xccL6_SILbfVVyyUtuK63K9aQ4E7quS2mleUV1RbURmp8Wb1J64Jxby8VZ8ftbxBki5DCNDMaO5R7jEQY2x2nGmAMmNnl2DG2ccGxhTssAGTv2RPI-jOxXyD2bp2FdIsIFtHEdQssiJrrr1yaGjqUehyExSGzuISFrexgPyHDEeFhZylMEao80NwYY0tvitaeE7_7lXXH_-dPd1Zfy9uv1zdXlbdkqaXNpO6m8l6CV5xK1F51oVNMpaXxT19qbWu8bLSyotjKgbd3oxtDawiN0jTXVrviwzaVdfy6YsnuYljjSk04qksdUNcWuON9QBxjQhdFPOUJL0SGpMo3oA51fGq0qo6zZE-HjMwJhMj7mAywpuZsf359j5YYleVOK6N0cwxHi6gR3T866zVlHzrq_zrqVSNVGSgQmIeP_f7_A-gMEW6pA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Qiu, Xiaolin</creator><creator>Lu, Lixin</creator><creator>Tang, Guoyi</creator><creator>Song, Guolin</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-2091-4489</orcidid></search><sort><creationdate>20210201</creationdate><title>Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials</title><author>Qiu, Xiaolin ; Lu, Lixin ; Tang, Guoyi ; Song, Guolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-9d24ff2a54f02e5f1d1b4bd426fb885f6857b519a4c36a598b5b60991feadb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrylic resins</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Building materials</topic><topic>Calorimetry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Construction materials</topic><topic>Control systems</topic><topic>Crosslinking</topic><topic>Differential scanning calorimetry</topic><topic>Energy management systems</topic><topic>Energy storage</topic><topic>Gravimetric analysis</topic><topic>Infrared imaging</topic><topic>Inorganic Chemistry</topic><topic>Latent heat</topic><topic>Measurement Science and Instrumentation</topic><topic>Morphology</topic><topic>Paraffins</topic><topic>Phase change materials</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polymethyl methacrylate</topic><topic>Polyols</topic><topic>Polyureas</topic><topic>Polyurethane foam</topic><topic>Product development</topic><topic>Storage capacity</topic><topic>Thermal control systems</topic><topic>Thermal energy</topic><topic>Thermal properties</topic><topic>Thermal storage</topic><topic>Thermodynamic properties</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiaolin</creatorcontrib><creatorcontrib>Lu, Lixin</creatorcontrib><creatorcontrib>Tang, Guoyi</creatorcontrib><creatorcontrib>Song, Guolin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiaolin</au><au>Lu, Lixin</au><au>Tang, Guoyi</au><au>Song, Guolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>143</volume><issue>4</issue><spage>3023</spage><epage>3032</epage><pages>3023-3032</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials was obtained in situ by combining interfacial polymerization and suspension-like polymerization. Glycerin (GC) acts as a cross-linking agent to modify the shells. The morphologies, particle size distributions, thermal storage properties, thermal stabilities and thermal reliabilities of microencapsulated phase change materials (MicroPCMs) were determined by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). The temperature regulation performance of the foam with MicroPCMs was investigated by an infrared thermal imager. DSC results showed that MicroPCMs with polyurea/butyl methacrylate (PU/BMA) possess an improved heat ability and thermal reliability compared to MicroPCMs with polyurea/methyl methacrylate (PU/MMA). The incorporation of GC to shell-forming composition led to an enhancement in thermal storage capacity of the MicroPCMs. The MicroPCMs with GC-modified PU/BMA hybrid shell has the highest PCMs content by as much as 82.6 mass%. The change in latent heat of MicroPCMs with GC-modified PU/BMA hybrid shell was very small of less than 4 mass% after 500 thermal cycles. The infrared thermography indicated that the PU foam incorporating the MicroPCMs with GC-modified PU/BMA hybrid shell has better temperature-regulated property. In conclusion, the MicroPCMs with PU/BMA hybrid shells, especially with GC-modified PU/BMA hybrid shell, possess a promising prospect applying in energy-conserving building materials and thermal control system of shipping packages.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-09354-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2091-4489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2021-02, Vol.143 (4), p.3023-3032 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2499063838 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acrylic resins Analysis Analytical Chemistry Building materials Calorimetry Chemistry Chemistry and Materials Science Construction materials Control systems Crosslinking Differential scanning calorimetry Energy management systems Energy storage Gravimetric analysis Infrared imaging Inorganic Chemistry Latent heat Measurement Science and Instrumentation Morphology Paraffins Phase change materials Physical Chemistry Polymer Sciences Polymerization Polymethyl methacrylate Polyols Polyureas Polyurethane foam Product development Storage capacity Thermal control systems Thermal energy Thermal properties Thermal storage Thermodynamic properties Thermography |
title | Preparation and thermal properties of microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20thermal%20properties%20of%20microencapsulated%20paraffin%20with%20polyurea/acrylic%20resin%20hybrid%20shells%20as%20phase%20change%20energy%20storage%20materials&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Qiu,%20Xiaolin&rft.date=2021-02-01&rft.volume=143&rft.issue=4&rft.spage=3023&rft.epage=3032&rft.pages=3023-3032&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-09354-y&rft_dat=%3Cgale_proqu%3EA654364967%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499063838&rft_id=info:pmid/&rft_galeid=A654364967&rfr_iscdi=true |