Solving Linear Programs in the Current Matrix Multiplication Time

This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2021-02, Vol.68 (1), p.1-39
Hauptverfasser: Cohen, Michael B., Lee, Yin Tat, Song, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 1
container_title Journal of the ACM
container_volume 68
creator Cohen, Michael B.
Lee, Yin Tat
Song, Zhao
description This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W .
doi_str_mv 10.1145/3424305
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2499026897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499026897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoWKf4FwJeeFV9891ejqJT2FBwgncladOZ0S-TVPTfW9muDgcezoEHoWsCd4Rwcc845QzECUqIECpVTHycogQAeCo4IefoIoT9XIGCStDybWi_Xb_Da9db7fGrH3ZedwG7HsdPi4vJe9tHvNHRux-8mdroxtZVOrqhx1vX2Ut01ug22KtjLtD748O2eErXL6vnYrlOK5rJmFZVYwwzIKkSyhhFlTRa1dxKS0WWCxAgiZZQE04zw2vaaC0rKXLOiOWmZgt0c9gd_fA12RDL_TD5fr4sKc9zoDLL1UzdHqjKDyF425Sjd532vyWB8t9PefTD_gBdqFX7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499026897</pqid></control><display><type>article</type><title>Solving Linear Programs in the Current Matrix Multiplication Time</title><source>ACM Digital Library Complete</source><creator>Cohen, Michael B. ; Lee, Yin Tat ; Song, Zhao</creator><creatorcontrib>Cohen, Michael B. ; Lee, Yin Tat ; Song, Zhao</creatorcontrib><description>This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W .</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/3424305</identifier><language>eng</language><publisher>New York: Association for Computing Machinery</publisher><subject>Algorithms ; Linear programming ; Mathematical analysis ; Matrix methods ; Multiplication</subject><ispartof>Journal of the ACM, 2021-02, Vol.68 (1), p.1-39</ispartof><rights>Copyright Association for Computing Machinery Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3</citedby><cites>FETCH-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Cohen, Michael B.</creatorcontrib><creatorcontrib>Lee, Yin Tat</creatorcontrib><creatorcontrib>Song, Zhao</creatorcontrib><title>Solving Linear Programs in the Current Matrix Multiplication Time</title><title>Journal of the ACM</title><description>This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W .</description><subject>Algorithms</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Multiplication</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAYhYMoWKf4FwJeeFV9891ejqJT2FBwgncladOZ0S-TVPTfW9muDgcezoEHoWsCd4Rwcc845QzECUqIECpVTHycogQAeCo4IefoIoT9XIGCStDybWi_Xb_Da9db7fGrH3ZedwG7HsdPi4vJe9tHvNHRux-8mdroxtZVOrqhx1vX2Ut01ug22KtjLtD748O2eErXL6vnYrlOK5rJmFZVYwwzIKkSyhhFlTRa1dxKS0WWCxAgiZZQE04zw2vaaC0rKXLOiOWmZgt0c9gd_fA12RDL_TD5fr4sKc9zoDLL1UzdHqjKDyF425Sjd532vyWB8t9PefTD_gBdqFX7</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cohen, Michael B.</creator><creator>Lee, Yin Tat</creator><creator>Song, Zhao</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210201</creationdate><title>Solving Linear Programs in the Current Matrix Multiplication Time</title><author>Cohen, Michael B. ; Lee, Yin Tat ; Song, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Multiplication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Michael B.</creatorcontrib><creatorcontrib>Lee, Yin Tat</creatorcontrib><creatorcontrib>Song, Zhao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Michael B.</au><au>Lee, Yin Tat</au><au>Song, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Linear Programs in the Current Matrix Multiplication Time</atitle><jtitle>Journal of the ACM</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>1</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W .</abstract><cop>New York</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3424305</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2021-02, Vol.68 (1), p.1-39
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_journals_2499026897
source ACM Digital Library Complete
subjects Algorithms
Linear programming
Mathematical analysis
Matrix methods
Multiplication
title Solving Linear Programs in the Current Matrix Multiplication Time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Linear%20Programs%20in%20the%20Current%20Matrix%20Multiplication%20Time&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Cohen,%20Michael%20B.&rft.date=2021-02-01&rft.volume=68&rft.issue=1&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/3424305&rft_dat=%3Cproquest_cross%3E2499026897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499026897&rft_id=info:pmid/&rfr_iscdi=true