Semantic Enrichment of Linked Archival Materials
By using the metadata for the fonds of “Chen Cheng-po’s Paintings and Documents” (CCP) in the database of the Archives of the Institute of Taiwan History (IHT, Academia Sinica, Taiwan), we develop and enhance a semantic data model for converting the data into a linked data project, focusing on data...
Gespeichert in:
Veröffentlicht in: | Knowledge organization 2019-01, Vol.46 (7), p.530-547 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | 7 |
container_start_page | 530 |
container_title | Knowledge organization |
container_volume | 46 |
creator | Chen, Shu-Jiun |
description | By using the metadata for the fonds of “Chen Cheng-po’s Paintings and Documents” (CCP) in the database of the Archives of the Institute of Taiwan History (IHT, Academia Sinica, Taiwan), we develop and enhance a semantic data model for converting the data into a linked data project, focusing on data modeling, data reconciliation, and data enrichment. The research questions are: 1) How can we keep the original rich and contextual information of the archival materials during a LOD task?; 2) How can we integrate heterogeneous datasets about the same real-world resources from libraries, archives, and museums, while keeping the different views distinct?; and, (3) How can we provide added value for semantic metadata of archives in terms of instance-based and schema-based types of enrichment? The project adopts the Europeana Data Model (EDM) as the main model and extends the properties to fit the contextual characteristics of archival materials. Various methods are explored to preserve the hierarchical structure and context of the archival materials, to enrich semantic data, and to connect data from different sources and institutions. We propose four approaches to enriching data semantics by: 1) directly using external vocabularies; 2) reconciling local links to other linked data sources; 3) introducing contextual classes for the appropriate contextual entities; and, 4) utilizing named entity extraction. The results can contribute to the best practice for developing linked data for art-related archival materials. |
doi_str_mv | 10.5771/0943-7444-2019-7-530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2498967885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498967885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-8d771135b188ae68f95d8d74161d7a01dfbad959087fb8bc9fb96e964b6f8c63</originalsourceid><addsrcrecordid>eNp9UE1LAzEUzEHBUvsPPCx4jibZfB5LqR-w4sHeQ5JNaGp3tyZbwX9vlhW9-S4Dj5l5bwaAG4zumBD4HilaQ0EphQRhBQVkNboAi9_1FVjlfEBlOBGMkwVAb74z_Rhdte1TdPvO92M1hKqJ_btvq3Vy-_hpjtWLGX2K5pivwWUo4Fc_uAS7h-1u8wSb18fnzbqBjjAyQtmWf3DNLJbSeC6DYm3ZUcxxKwzCbbCmVUwhKYKV1qlgFfeKU8uDdLxegtvZ9pSGj7PPoz4M59SXi5pQJRUXUrLCojPLpSHn5IM-pdiZ9KUx0lMjeoqup-h6akQLXRopMjLL-qEb8p_zv6JvIoBjTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498967885</pqid></control><display><type>article</type><title>Semantic Enrichment of Linked Archival Materials</title><source>Alma/SFX Local Collection</source><creator>Chen, Shu-Jiun</creator><creatorcontrib>Chen, Shu-Jiun</creatorcontrib><description>By using the metadata for the fonds of “Chen Cheng-po’s Paintings and Documents” (CCP) in the database of the Archives of the Institute of Taiwan History (IHT, Academia Sinica, Taiwan), we develop and enhance a semantic data model for converting the data into a linked data project, focusing on data modeling, data reconciliation, and data enrichment. The research questions are: 1) How can we keep the original rich and contextual information of the archival materials during a LOD task?; 2) How can we integrate heterogeneous datasets about the same real-world resources from libraries, archives, and museums, while keeping the different views distinct?; and, (3) How can we provide added value for semantic metadata of archives in terms of instance-based and schema-based types of enrichment? The project adopts the Europeana Data Model (EDM) as the main model and extends the properties to fit the contextual characteristics of archival materials. Various methods are explored to preserve the hierarchical structure and context of the archival materials, to enrich semantic data, and to connect data from different sources and institutions. We propose four approaches to enriching data semantics by: 1) directly using external vocabularies; 2) reconciling local links to other linked data sources; 3) introducing contextual classes for the appropriate contextual entities; and, 4) utilizing named entity extraction. The results can contribute to the best practice for developing linked data for art-related archival materials.</description><identifier>ISSN: 0943-7444</identifier><identifier>DOI: 10.5771/0943-7444-2019-7-530</identifier><language>eng</language><publisher>Baden-Baden: Nomos Verlagsgesellschaft mbH & Co. KG</publisher><subject>Archives & records ; Data models ; Linked Data ; Metadata ; Semantics</subject><ispartof>Knowledge organization, 2019-01, Vol.46 (7), p.530-547</ispartof><rights>Copyright Nomos Verlagsgesellschaft mbH und Co KG 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-8d771135b188ae68f95d8d74161d7a01dfbad959087fb8bc9fb96e964b6f8c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, Shu-Jiun</creatorcontrib><title>Semantic Enrichment of Linked Archival Materials</title><title>Knowledge organization</title><addtitle>KO</addtitle><description>By using the metadata for the fonds of “Chen Cheng-po’s Paintings and Documents” (CCP) in the database of the Archives of the Institute of Taiwan History (IHT, Academia Sinica, Taiwan), we develop and enhance a semantic data model for converting the data into a linked data project, focusing on data modeling, data reconciliation, and data enrichment. The research questions are: 1) How can we keep the original rich and contextual information of the archival materials during a LOD task?; 2) How can we integrate heterogeneous datasets about the same real-world resources from libraries, archives, and museums, while keeping the different views distinct?; and, (3) How can we provide added value for semantic metadata of archives in terms of instance-based and schema-based types of enrichment? The project adopts the Europeana Data Model (EDM) as the main model and extends the properties to fit the contextual characteristics of archival materials. Various methods are explored to preserve the hierarchical structure and context of the archival materials, to enrich semantic data, and to connect data from different sources and institutions. We propose four approaches to enriching data semantics by: 1) directly using external vocabularies; 2) reconciling local links to other linked data sources; 3) introducing contextual classes for the appropriate contextual entities; and, 4) utilizing named entity extraction. The results can contribute to the best practice for developing linked data for art-related archival materials.</description><subject>Archives & records</subject><subject>Data models</subject><subject>Linked Data</subject><subject>Metadata</subject><subject>Semantics</subject><issn>0943-7444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LAzEUzEHBUvsPPCx4jibZfB5LqR-w4sHeQ5JNaGp3tyZbwX9vlhW9-S4Dj5l5bwaAG4zumBD4HilaQ0EphQRhBQVkNboAi9_1FVjlfEBlOBGMkwVAb74z_Rhdte1TdPvO92M1hKqJ_btvq3Vy-_hpjtWLGX2K5pivwWUo4Fc_uAS7h-1u8wSb18fnzbqBjjAyQtmWf3DNLJbSeC6DYm3ZUcxxKwzCbbCmVUwhKYKV1qlgFfeKU8uDdLxegtvZ9pSGj7PPoz4M59SXi5pQJRUXUrLCojPLpSHn5IM-pdiZ9KUx0lMjeoqup-h6akQLXRopMjLL-qEb8p_zv6JvIoBjTg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Chen, Shu-Jiun</creator><general>Nomos Verlagsgesellschaft mbH & Co. KG</general><general>Nomos Verlagsgesellschaft mbH und Co KG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190101</creationdate><title>Semantic Enrichment of Linked Archival Materials</title><author>Chen, Shu-Jiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-8d771135b188ae68f95d8d74161d7a01dfbad959087fb8bc9fb96e964b6f8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Archives & records</topic><topic>Data models</topic><topic>Linked Data</topic><topic>Metadata</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shu-Jiun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Knowledge organization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shu-Jiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Enrichment of Linked Archival Materials</atitle><jtitle>Knowledge organization</jtitle><addtitle>KO</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>46</volume><issue>7</issue><spage>530</spage><epage>547</epage><pages>530-547</pages><issn>0943-7444</issn><abstract>By using the metadata for the fonds of “Chen Cheng-po’s Paintings and Documents” (CCP) in the database of the Archives of the Institute of Taiwan History (IHT, Academia Sinica, Taiwan), we develop and enhance a semantic data model for converting the data into a linked data project, focusing on data modeling, data reconciliation, and data enrichment. The research questions are: 1) How can we keep the original rich and contextual information of the archival materials during a LOD task?; 2) How can we integrate heterogeneous datasets about the same real-world resources from libraries, archives, and museums, while keeping the different views distinct?; and, (3) How can we provide added value for semantic metadata of archives in terms of instance-based and schema-based types of enrichment? The project adopts the Europeana Data Model (EDM) as the main model and extends the properties to fit the contextual characteristics of archival materials. Various methods are explored to preserve the hierarchical structure and context of the archival materials, to enrich semantic data, and to connect data from different sources and institutions. We propose four approaches to enriching data semantics by: 1) directly using external vocabularies; 2) reconciling local links to other linked data sources; 3) introducing contextual classes for the appropriate contextual entities; and, 4) utilizing named entity extraction. The results can contribute to the best practice for developing linked data for art-related archival materials.</abstract><cop>Baden-Baden</cop><pub>Nomos Verlagsgesellschaft mbH & Co. KG</pub><doi>10.5771/0943-7444-2019-7-530</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0943-7444 |
ispartof | Knowledge organization, 2019-01, Vol.46 (7), p.530-547 |
issn | 0943-7444 |
language | eng |
recordid | cdi_proquest_journals_2498967885 |
source | Alma/SFX Local Collection |
subjects | Archives & records Data models Linked Data Metadata Semantics |
title | Semantic Enrichment of Linked Archival Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Enrichment%20of%20Linked%20Archival%20Materials&rft.jtitle=Knowledge%20organization&rft.au=Chen,%20Shu-Jiun&rft.date=2019-01-01&rft.volume=46&rft.issue=7&rft.spage=530&rft.epage=547&rft.pages=530-547&rft.issn=0943-7444&rft_id=info:doi/10.5771/0943-7444-2019-7-530&rft_dat=%3Cproquest_cross%3E2498967885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498967885&rft_id=info:pmid/&rfr_iscdi=true |