Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression
Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.36802-36818 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36818 |
---|---|
container_issue | |
container_start_page | 36802 |
container_title | IEEE access |
container_volume | 9 |
creator | Keserwani, Prateek Dhankhar, Ankit Saini, Rajkumar Roy, Partha Pratim |
description | Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability. |
doi_str_mv | 10.1109/ACCESS.2021.3063030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2498877314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9366523</ieee_id><doaj_id>oai_doaj_org_article_8933222f75594deeab220a58f8c88a03</doaj_id><sourcerecordid>2498877314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</originalsourceid><addsrcrecordid>eNpVkV9L5DAUxYu4oKifwJeCrztjktu0iW_j-BcEcUfnNdymt0OHbjMmLTv77U2tyG5ecnM458cNJ0nOOZtzzvTlYrm8Xa3mggk-B5YDA3aQHAue6xlIyA__mY-SsxC2LB4VJVkcJ-uXAavS7a_ScfBNiz15bNNrN3RV023isE-vMVCVrix1lL7Svk9vqCfbN65L38JoWseX8-kv2ngKIeqnyY8a20BnX_dJ8nZ3-7p8mD093z8uF08zm2WynymRgcyAgEngHEpd2VwwbZUFLDiCllbXtgSe5RqFJYZ1zouMKSxtZcsaTpLHiVs53Jqdb36j_2scNuZTcH5j0PeNbckoDSCEqAspdVYRYSkEQ6lqZZVCBpH1c2KFP7Qbyv9oN8168Ulr-8Eo4MVov5jsO-_eBwq92brBd_G3RmRaqaKIa0cXTC7rXQie6m8sZ2asz0z1mbE-81VfTJ1PqYaIvhMa8lwKgA_JY5UY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498877314</pqid></control><display><type>article</type><title>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SWEPUB Freely available online</source><creator>Keserwani, Prateek ; Dhankhar, Ankit ; Saini, Rajkumar ; Roy, Partha Pratim</creator><creatorcontrib>Keserwani, Prateek ; Dhankhar, Ankit ; Saini, Rajkumar ; Roy, Partha Pratim</creatorcontrib><description>Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3063030</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>centroid of the quadrilateral ; Centroids ; Datasets ; direct regression ; Estimation ; Feature extraction ; Geometry ; Image color analysis ; indirect regression ; Machine Learning ; Maskininlärning ; Object detection ; Predictions ; Proposals ; quadrilateral bounding boxes ; Quadrilaterals ; Regression ; Scene text detection</subject><ispartof>IEEE access, 2021, Vol.9, p.36802-36818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</citedby><cites>FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</cites><orcidid>0000-0001-7611-6462 ; 0000-0001-8532-0895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9366523$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,864,885,2102,4024,27633,27923,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83173$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Keserwani, Prateek</creatorcontrib><creatorcontrib>Dhankhar, Ankit</creatorcontrib><creatorcontrib>Saini, Rajkumar</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><title>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</title><title>IEEE access</title><addtitle>Access</addtitle><description>Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability.</description><subject>centroid of the quadrilateral</subject><subject>Centroids</subject><subject>Datasets</subject><subject>direct regression</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Geometry</subject><subject>Image color analysis</subject><subject>indirect regression</subject><subject>Machine Learning</subject><subject>Maskininlärning</subject><subject>Object detection</subject><subject>Predictions</subject><subject>Proposals</subject><subject>quadrilateral bounding boxes</subject><subject>Quadrilaterals</subject><subject>Regression</subject><subject>Scene text detection</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkV9L5DAUxYu4oKifwJeCrztjktu0iW_j-BcEcUfnNdymt0OHbjMmLTv77U2tyG5ecnM458cNJ0nOOZtzzvTlYrm8Xa3mggk-B5YDA3aQHAue6xlIyA__mY-SsxC2LB4VJVkcJ-uXAavS7a_ScfBNiz15bNNrN3RV023isE-vMVCVrix1lL7Svk9vqCfbN65L38JoWseX8-kv2ngKIeqnyY8a20BnX_dJ8nZ3-7p8mD093z8uF08zm2WynymRgcyAgEngHEpd2VwwbZUFLDiCllbXtgSe5RqFJYZ1zouMKSxtZcsaTpLHiVs53Jqdb36j_2scNuZTcH5j0PeNbckoDSCEqAspdVYRYSkEQ6lqZZVCBpH1c2KFP7Qbyv9oN8168Ulr-8Eo4MVov5jsO-_eBwq92brBd_G3RmRaqaKIa0cXTC7rXQie6m8sZ2asz0z1mbE-81VfTJ1PqYaIvhMa8lwKgA_JY5UY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Keserwani, Prateek</creator><creator>Dhankhar, Ankit</creator><creator>Saini, Rajkumar</creator><creator>Roy, Partha Pratim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7611-6462</orcidid><orcidid>https://orcid.org/0000-0001-8532-0895</orcidid></search><sort><creationdate>2021</creationdate><title>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</title><author>Keserwani, Prateek ; Dhankhar, Ankit ; Saini, Rajkumar ; Roy, Partha Pratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>centroid of the quadrilateral</topic><topic>Centroids</topic><topic>Datasets</topic><topic>direct regression</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Geometry</topic><topic>Image color analysis</topic><topic>indirect regression</topic><topic>Machine Learning</topic><topic>Maskininlärning</topic><topic>Object detection</topic><topic>Predictions</topic><topic>Proposals</topic><topic>quadrilateral bounding boxes</topic><topic>Quadrilaterals</topic><topic>Regression</topic><topic>Scene text detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keserwani, Prateek</creatorcontrib><creatorcontrib>Dhankhar, Ankit</creatorcontrib><creatorcontrib>Saini, Rajkumar</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keserwani, Prateek</au><au>Dhankhar, Ankit</au><au>Saini, Rajkumar</au><au>Roy, Partha Pratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>36802</spage><epage>36818</epage><pages>36802-36818</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3063030</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7611-6462</orcidid><orcidid>https://orcid.org/0000-0001-8532-0895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.36802-36818 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2498877314 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; SWEPUB Freely available online |
subjects | centroid of the quadrilateral Centroids Datasets direct regression Estimation Feature extraction Geometry Image color analysis indirect regression Machine Learning Maskininlärning Object detection Predictions Proposals quadrilateral bounding boxes Quadrilaterals Regression Scene text detection |
title | Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadbox:%20Quadrilateral%20Bounding%20Box%20Based%20Scene%20Text%20Detection%20Using%20Vector%20Regression&rft.jtitle=IEEE%20access&rft.au=Keserwani,%20Prateek&rft.date=2021&rft.volume=9&rft.spage=36802&rft.epage=36818&rft.pages=36802-36818&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3063030&rft_dat=%3Cproquest_cross%3E2498877314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498877314&rft_id=info:pmid/&rft_ieee_id=9366523&rft_doaj_id=oai_doaj_org_article_8933222f75594deeab220a58f8c88a03&rfr_iscdi=true |