Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression

Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.36802-36818
Hauptverfasser: Keserwani, Prateek, Dhankhar, Ankit, Saini, Rajkumar, Roy, Partha Pratim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36818
container_issue
container_start_page 36802
container_title IEEE access
container_volume 9
creator Keserwani, Prateek
Dhankhar, Ankit
Saini, Rajkumar
Roy, Partha Pratim
description Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability.
doi_str_mv 10.1109/ACCESS.2021.3063030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2498877314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9366523</ieee_id><doaj_id>oai_doaj_org_article_8933222f75594deeab220a58f8c88a03</doaj_id><sourcerecordid>2498877314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</originalsourceid><addsrcrecordid>eNpVkV9L5DAUxYu4oKifwJeCrztjktu0iW_j-BcEcUfnNdymt0OHbjMmLTv77U2tyG5ecnM458cNJ0nOOZtzzvTlYrm8Xa3mggk-B5YDA3aQHAue6xlIyA__mY-SsxC2LB4VJVkcJ-uXAavS7a_ScfBNiz15bNNrN3RV023isE-vMVCVrix1lL7Svk9vqCfbN65L38JoWseX8-kv2ngKIeqnyY8a20BnX_dJ8nZ3-7p8mD093z8uF08zm2WynymRgcyAgEngHEpd2VwwbZUFLDiCllbXtgSe5RqFJYZ1zouMKSxtZcsaTpLHiVs53Jqdb36j_2scNuZTcH5j0PeNbckoDSCEqAspdVYRYSkEQ6lqZZVCBpH1c2KFP7Qbyv9oN8168Ulr-8Eo4MVov5jsO-_eBwq92brBd_G3RmRaqaKIa0cXTC7rXQie6m8sZ2asz0z1mbE-81VfTJ1PqYaIvhMa8lwKgA_JY5UY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498877314</pqid></control><display><type>article</type><title>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SWEPUB Freely available online</source><creator>Keserwani, Prateek ; Dhankhar, Ankit ; Saini, Rajkumar ; Roy, Partha Pratim</creator><creatorcontrib>Keserwani, Prateek ; Dhankhar, Ankit ; Saini, Rajkumar ; Roy, Partha Pratim</creatorcontrib><description>Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3063030</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>centroid of the quadrilateral ; Centroids ; Datasets ; direct regression ; Estimation ; Feature extraction ; Geometry ; Image color analysis ; indirect regression ; Machine Learning ; Maskininlärning ; Object detection ; Predictions ; Proposals ; quadrilateral bounding boxes ; Quadrilaterals ; Regression ; Scene text detection</subject><ispartof>IEEE access, 2021, Vol.9, p.36802-36818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</citedby><cites>FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</cites><orcidid>0000-0001-7611-6462 ; 0000-0001-8532-0895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9366523$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,864,885,2102,4024,27633,27923,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83173$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Keserwani, Prateek</creatorcontrib><creatorcontrib>Dhankhar, Ankit</creatorcontrib><creatorcontrib>Saini, Rajkumar</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><title>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</title><title>IEEE access</title><addtitle>Access</addtitle><description>Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability.</description><subject>centroid of the quadrilateral</subject><subject>Centroids</subject><subject>Datasets</subject><subject>direct regression</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Geometry</subject><subject>Image color analysis</subject><subject>indirect regression</subject><subject>Machine Learning</subject><subject>Maskininlärning</subject><subject>Object detection</subject><subject>Predictions</subject><subject>Proposals</subject><subject>quadrilateral bounding boxes</subject><subject>Quadrilaterals</subject><subject>Regression</subject><subject>Scene text detection</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNpVkV9L5DAUxYu4oKifwJeCrztjktu0iW_j-BcEcUfnNdymt0OHbjMmLTv77U2tyG5ecnM458cNJ0nOOZtzzvTlYrm8Xa3mggk-B5YDA3aQHAue6xlIyA__mY-SsxC2LB4VJVkcJ-uXAavS7a_ScfBNiz15bNNrN3RV023isE-vMVCVrix1lL7Svk9vqCfbN65L38JoWseX8-kv2ngKIeqnyY8a20BnX_dJ8nZ3-7p8mD093z8uF08zm2WynymRgcyAgEngHEpd2VwwbZUFLDiCllbXtgSe5RqFJYZ1zouMKSxtZcsaTpLHiVs53Jqdb36j_2scNuZTcH5j0PeNbckoDSCEqAspdVYRYSkEQ6lqZZVCBpH1c2KFP7Qbyv9oN8168Ulr-8Eo4MVov5jsO-_eBwq92brBd_G3RmRaqaKIa0cXTC7rXQie6m8sZ2asz0z1mbE-81VfTJ1PqYaIvhMa8lwKgA_JY5UY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Keserwani, Prateek</creator><creator>Dhankhar, Ankit</creator><creator>Saini, Rajkumar</creator><creator>Roy, Partha Pratim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7611-6462</orcidid><orcidid>https://orcid.org/0000-0001-8532-0895</orcidid></search><sort><creationdate>2021</creationdate><title>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</title><author>Keserwani, Prateek ; Dhankhar, Ankit ; Saini, Rajkumar ; Roy, Partha Pratim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-8243543e3053113b9dc6209c8c3a71a395c9fcb31469a2ce0af617408abcdcbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>centroid of the quadrilateral</topic><topic>Centroids</topic><topic>Datasets</topic><topic>direct regression</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Geometry</topic><topic>Image color analysis</topic><topic>indirect regression</topic><topic>Machine Learning</topic><topic>Maskininlärning</topic><topic>Object detection</topic><topic>Predictions</topic><topic>Proposals</topic><topic>quadrilateral bounding boxes</topic><topic>Quadrilaterals</topic><topic>Regression</topic><topic>Scene text detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keserwani, Prateek</creatorcontrib><creatorcontrib>Dhankhar, Ankit</creatorcontrib><creatorcontrib>Saini, Rajkumar</creatorcontrib><creatorcontrib>Roy, Partha Pratim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keserwani, Prateek</au><au>Dhankhar, Ankit</au><au>Saini, Rajkumar</au><au>Roy, Partha Pratim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>36802</spage><epage>36818</epage><pages>36802-36818</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Scene text appears with a wide range of sizes and arbitrary orientations. For detecting such text in the scene image, the quadrilateral bounding boxes provide a much tight bounding box compared to the rotated rectangle. In this work, a vector regression method has been proposed for text detection in the wild to generate a quadrilateral bounding box. The bounding box prediction using direct regression requires predicting the vectors from each position inside the quadrilateral. It needs to predict four-vectors, and each varies drastically in its length and orientation. It makes the vector prediction a difficult problem. To overcome this, we have proposed a centroid-centric vector regression by utilizing the geometry of quadrilateral. In this work, we have added the philosophy of indirect regression to direct regression by shifting all points within the quadrilateral to the centroid and afterward performed vector regression from shifted points. The experimental results show the improvement of the quadrilateral approach over the existing direct regression approach. The proposed method shows good performance on many existing public datasets. The proposed method also demonstrates good results on the unseen dataset without getting trained on it, which validates the approach's generalization ability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3063030</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7611-6462</orcidid><orcidid>https://orcid.org/0000-0001-8532-0895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.36802-36818
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2498877314
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; SWEPUB Freely available online
subjects centroid of the quadrilateral
Centroids
Datasets
direct regression
Estimation
Feature extraction
Geometry
Image color analysis
indirect regression
Machine Learning
Maskininlärning
Object detection
Predictions
Proposals
quadrilateral bounding boxes
Quadrilaterals
Regression
Scene text detection
title Quadbox: Quadrilateral Bounding Box Based Scene Text Detection Using Vector Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadbox:%20Quadrilateral%20Bounding%20Box%20Based%20Scene%20Text%20Detection%20Using%20Vector%20Regression&rft.jtitle=IEEE%20access&rft.au=Keserwani,%20Prateek&rft.date=2021&rft.volume=9&rft.spage=36802&rft.epage=36818&rft.pages=36802-36818&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3063030&rft_dat=%3Cproquest_cross%3E2498877314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498877314&rft_id=info:pmid/&rft_ieee_id=9366523&rft_doaj_id=oai_doaj_org_article_8933222f75594deeab220a58f8c88a03&rfr_iscdi=true