Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids: From Simulations to Real-World Experiments
Micro- and smart grids (MSG) play an important role both for integrating renewable energy sources in electricity grids and for providing power supply in remote areas. Modern MSGs are largely driven by power electronic converters due to their high efficiency and flexibility. Controlling MSGs is a cha...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.35654-35669 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35669 |
---|---|
container_issue | |
container_start_page | 35654 |
container_title | IEEE access |
container_volume | 9 |
creator | Weber, Daniel Heid, Stefan Bode, Henrik Lange, Jarren H. Hullermeier, Eyke Wallscheid, Oliver |
description | Micro- and smart grids (MSG) play an important role both for integrating renewable energy sources in electricity grids and for providing power supply in remote areas. Modern MSGs are largely driven by power electronic converters due to their high efficiency and flexibility. Controlling MSGs is a challenging task due to requirements of power availability, safety and voltage quality within a wide range of different MSG topologies resulting in a demand for comprehensive testing of new control concepts during their development phase. This applies, in particular, to data-driven control approaches such as reinforcement learning, of which the stability and operating behavior can hardly be evaluated on an analytical basis. Therefore, the OpenModelica Microgrid Gym (OMG) package, an open-source software toolbox for the simulation and control optimization of MSGs, is proposed. It is capable of modeling and simulating arbitrary MSG topologies and offers a Python-based interface for plug & play controller testing. In particular, the standardized OpenAI Gym interface allows for easy data-driven control optimization. The usage and benefits of OMG for designing and testing data-driven controllers are demonstrated utilizing Bayesian optimization. Both the current and voltage control loops of a voltage source inverter operating in standalone, grid-forming mode for a remote MSG are automatically tuned given an uncertain application environment. Finally, the transfer to real-world laboratory experiments is successfully demonstrated. |
doi_str_mv | 10.1109/ACCESS.2021.3062144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2498877215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9363170</ieee_id><doaj_id>oai_doaj_org_article_3c0e2268c7174149935db264dcd498ae</doaj_id><sourcerecordid>2498877215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a81438ec08447f37273ddb838c2ae5f400b213473c70e24059464736d4d5dcd03</originalsourceid><addsrcrecordid>eNpNkUtvGyEUhUdVIzVK8wuyQep6XF4zMN2lY-chJUpUt-oSYbhjYY3BBZzXPv-7JBNFYcO9V-d8F3Gq6oTgGSG4-37a94vlckYxJTOGW0o4_1QdUtJ2NWtY-_lD_aU6TmmDy5Fl1IjD6nmpB0A_9SMkpz262WW3dU86u-DRECKa66zreXR34NFtuIeIFiOYHIN3JqE--FKOaF7ca4-cR9fOxLCOzqYf6CyGLVq67X585SWUA_oFeqz_hjhatHjYQXRb8Dl9rQ4GPSY4fruPqj9ni9_9RX11c37Zn17VhmOZay0JZxIMlpyLgQkqmLUryaShGpqBY7yihHHBjMBAOW463pautdw21ljMjqrLiWuD3qhd2a7jowraqddBiGulY3ZmBMVMQdBWGkEEJ7zrWGNXtOWFwzupobC-TaxdDP_2kLLahH305fmKFoUUgpKmqNikKt-SUoThfSvB6iU-NcWnXuJTb_EV18nkcgDw7uhYy4jA7D8uQpX9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498877215</pqid></control><display><type>article</type><title>Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids: From Simulations to Real-World Experiments</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Weber, Daniel ; Heid, Stefan ; Bode, Henrik ; Lange, Jarren H. ; Hullermeier, Eyke ; Wallscheid, Oliver</creator><creatorcontrib>Weber, Daniel ; Heid, Stefan ; Bode, Henrik ; Lange, Jarren H. ; Hullermeier, Eyke ; Wallscheid, Oliver</creatorcontrib><description>Micro- and smart grids (MSG) play an important role both for integrating renewable energy sources in electricity grids and for providing power supply in remote areas. Modern MSGs are largely driven by power electronic converters due to their high efficiency and flexibility. Controlling MSGs is a challenging task due to requirements of power availability, safety and voltage quality within a wide range of different MSG topologies resulting in a demand for comprehensive testing of new control concepts during their development phase. This applies, in particular, to data-driven control approaches such as reinforcement learning, of which the stability and operating behavior can hardly be evaluated on an analytical basis. Therefore, the OpenModelica Microgrid Gym (OMG) package, an open-source software toolbox for the simulation and control optimization of MSGs, is proposed. It is capable of modeling and simulating arbitrary MSG topologies and offers a Python-based interface for plug & play controller testing. In particular, the standardized OpenAI Gym interface allows for easy data-driven control optimization. The usage and benefits of OMG for designing and testing data-driven controllers are demonstrated utilizing Bayesian optimization. Both the current and voltage control loops of a voltage source inverter operating in standalone, grid-forming mode for a remote MSG are automatically tuned given an uncertain application environment. Finally, the transfer to real-world laboratory experiments is successfully demonstrated.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3062144</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bayesian analysis ; Control ; Control stability ; Converters ; data-driven optimization ; Distributed generation ; Electric potential ; Electric power grids ; Energy conversion efficiency ; Integrated circuit modeling ; Load modeling ; Mathematical model ; microgrids ; Open source software ; Optimization ; Plug & play ; power electronics ; Renewable energy sources ; safety ; Simulation ; Smart grid ; Source code ; Stability analysis ; Testing ; Topology ; Voltage</subject><ispartof>IEEE access, 2021, Vol.9, p.35654-35669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a81438ec08447f37273ddb838c2ae5f400b213473c70e24059464736d4d5dcd03</citedby><cites>FETCH-LOGICAL-c408t-a81438ec08447f37273ddb838c2ae5f400b213473c70e24059464736d4d5dcd03</cites><orcidid>0000-0003-3367-5998 ; 0000-0001-9362-8777 ; 0000-0002-9944-4108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9363170$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Weber, Daniel</creatorcontrib><creatorcontrib>Heid, Stefan</creatorcontrib><creatorcontrib>Bode, Henrik</creatorcontrib><creatorcontrib>Lange, Jarren H.</creatorcontrib><creatorcontrib>Hullermeier, Eyke</creatorcontrib><creatorcontrib>Wallscheid, Oliver</creatorcontrib><title>Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids: From Simulations to Real-World Experiments</title><title>IEEE access</title><addtitle>Access</addtitle><description>Micro- and smart grids (MSG) play an important role both for integrating renewable energy sources in electricity grids and for providing power supply in remote areas. Modern MSGs are largely driven by power electronic converters due to their high efficiency and flexibility. Controlling MSGs is a challenging task due to requirements of power availability, safety and voltage quality within a wide range of different MSG topologies resulting in a demand for comprehensive testing of new control concepts during their development phase. This applies, in particular, to data-driven control approaches such as reinforcement learning, of which the stability and operating behavior can hardly be evaluated on an analytical basis. Therefore, the OpenModelica Microgrid Gym (OMG) package, an open-source software toolbox for the simulation and control optimization of MSGs, is proposed. It is capable of modeling and simulating arbitrary MSG topologies and offers a Python-based interface for plug & play controller testing. In particular, the standardized OpenAI Gym interface allows for easy data-driven control optimization. The usage and benefits of OMG for designing and testing data-driven controllers are demonstrated utilizing Bayesian optimization. Both the current and voltage control loops of a voltage source inverter operating in standalone, grid-forming mode for a remote MSG are automatically tuned given an uncertain application environment. Finally, the transfer to real-world laboratory experiments is successfully demonstrated.</description><subject>Bayesian analysis</subject><subject>Control</subject><subject>Control stability</subject><subject>Converters</subject><subject>data-driven optimization</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Electric power grids</subject><subject>Energy conversion efficiency</subject><subject>Integrated circuit modeling</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>microgrids</subject><subject>Open source software</subject><subject>Optimization</subject><subject>Plug & play</subject><subject>power electronics</subject><subject>Renewable energy sources</subject><subject>safety</subject><subject>Simulation</subject><subject>Smart grid</subject><subject>Source code</subject><subject>Stability analysis</subject><subject>Testing</subject><subject>Topology</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtvGyEUhUdVIzVK8wuyQep6XF4zMN2lY-chJUpUt-oSYbhjYY3BBZzXPv-7JBNFYcO9V-d8F3Gq6oTgGSG4-37a94vlckYxJTOGW0o4_1QdUtJ2NWtY-_lD_aU6TmmDy5Fl1IjD6nmpB0A_9SMkpz262WW3dU86u-DRECKa66zreXR34NFtuIeIFiOYHIN3JqE--FKOaF7ca4-cR9fOxLCOzqYf6CyGLVq67X585SWUA_oFeqz_hjhatHjYQXRb8Dl9rQ4GPSY4fruPqj9ni9_9RX11c37Zn17VhmOZay0JZxIMlpyLgQkqmLUryaShGpqBY7yihHHBjMBAOW463pautdw21ljMjqrLiWuD3qhd2a7jowraqddBiGulY3ZmBMVMQdBWGkEEJ7zrWGNXtOWFwzupobC-TaxdDP_2kLLahH305fmKFoUUgpKmqNikKt-SUoThfSvB6iU-NcWnXuJTb_EV18nkcgDw7uhYy4jA7D8uQpX9</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Weber, Daniel</creator><creator>Heid, Stefan</creator><creator>Bode, Henrik</creator><creator>Lange, Jarren H.</creator><creator>Hullermeier, Eyke</creator><creator>Wallscheid, Oliver</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3367-5998</orcidid><orcidid>https://orcid.org/0000-0001-9362-8777</orcidid><orcidid>https://orcid.org/0000-0002-9944-4108</orcidid></search><sort><creationdate>2021</creationdate><title>Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids: From Simulations to Real-World Experiments</title><author>Weber, Daniel ; Heid, Stefan ; Bode, Henrik ; Lange, Jarren H. ; Hullermeier, Eyke ; Wallscheid, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a81438ec08447f37273ddb838c2ae5f400b213473c70e24059464736d4d5dcd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Control</topic><topic>Control stability</topic><topic>Converters</topic><topic>data-driven optimization</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Electric power grids</topic><topic>Energy conversion efficiency</topic><topic>Integrated circuit modeling</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>microgrids</topic><topic>Open source software</topic><topic>Optimization</topic><topic>Plug & play</topic><topic>power electronics</topic><topic>Renewable energy sources</topic><topic>safety</topic><topic>Simulation</topic><topic>Smart grid</topic><topic>Source code</topic><topic>Stability analysis</topic><topic>Testing</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Daniel</creatorcontrib><creatorcontrib>Heid, Stefan</creatorcontrib><creatorcontrib>Bode, Henrik</creatorcontrib><creatorcontrib>Lange, Jarren H.</creatorcontrib><creatorcontrib>Hullermeier, Eyke</creatorcontrib><creatorcontrib>Wallscheid, Oliver</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Daniel</au><au>Heid, Stefan</au><au>Bode, Henrik</au><au>Lange, Jarren H.</au><au>Hullermeier, Eyke</au><au>Wallscheid, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids: From Simulations to Real-World Experiments</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>35654</spage><epage>35669</epage><pages>35654-35669</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Micro- and smart grids (MSG) play an important role both for integrating renewable energy sources in electricity grids and for providing power supply in remote areas. Modern MSGs are largely driven by power electronic converters due to their high efficiency and flexibility. Controlling MSGs is a challenging task due to requirements of power availability, safety and voltage quality within a wide range of different MSG topologies resulting in a demand for comprehensive testing of new control concepts during their development phase. This applies, in particular, to data-driven control approaches such as reinforcement learning, of which the stability and operating behavior can hardly be evaluated on an analytical basis. Therefore, the OpenModelica Microgrid Gym (OMG) package, an open-source software toolbox for the simulation and control optimization of MSGs, is proposed. It is capable of modeling and simulating arbitrary MSG topologies and offers a Python-based interface for plug & play controller testing. In particular, the standardized OpenAI Gym interface allows for easy data-driven control optimization. The usage and benefits of OMG for designing and testing data-driven controllers are demonstrated utilizing Bayesian optimization. Both the current and voltage control loops of a voltage source inverter operating in standalone, grid-forming mode for a remote MSG are automatically tuned given an uncertain application environment. Finally, the transfer to real-world laboratory experiments is successfully demonstrated.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3062144</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3367-5998</orcidid><orcidid>https://orcid.org/0000-0001-9362-8777</orcidid><orcidid>https://orcid.org/0000-0002-9944-4108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.35654-35669 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2498877215 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Bayesian analysis Control Control stability Converters data-driven optimization Distributed generation Electric potential Electric power grids Energy conversion efficiency Integrated circuit modeling Load modeling Mathematical model microgrids Open source software Optimization Plug & play power electronics Renewable energy sources safety Simulation Smart grid Source code Stability analysis Testing Topology Voltage |
title | Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids: From Simulations to Real-World Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safe%20Bayesian%20Optimization%20for%20Data-Driven%20Power%20Electronics%20Control%20Design%20in%20Microgrids:%20From%20Simulations%20to%20Real-World%20Experiments&rft.jtitle=IEEE%20access&rft.au=Weber,%20Daniel&rft.date=2021&rft.volume=9&rft.spage=35654&rft.epage=35669&rft.pages=35654-35669&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3062144&rft_dat=%3Cproquest_ieee_%3E2498877215%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498877215&rft_id=info:pmid/&rft_ieee_id=9363170&rft_doaj_id=oai_doaj_org_article_3c0e2268c7174149935db264dcd498ae&rfr_iscdi=true |